Loading…

Generalized Silver Codes

For an nt transmit, nr receive antenna system ( nt × nr system), a full-rate space time block code (STBC) transmits at least nmin = min ( nt , nr ) complex symbols per channel use. The well-known Golden code is an example of a full-rate, full-diversity STBC for two transmit antennas. Its ML-decoding...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2011-09, Vol.57 (9), p.6134-6147
Main Authors: Srinath, K. P., Rajan, B. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-72bea402326f7a9550a11d8319d1b03c48ab8583e6a85bb6d84bb9a15241c4ad3
cites cdi_FETCH-LOGICAL-c362t-72bea402326f7a9550a11d8319d1b03c48ab8583e6a85bb6d84bb9a15241c4ad3
container_end_page 6147
container_issue 9
container_start_page 6134
container_title IEEE transactions on information theory
container_volume 57
creator Srinath, K. P.
Rajan, B. S.
description For an nt transmit, nr receive antenna system ( nt × nr system), a full-rate space time block code (STBC) transmits at least nmin = min ( nt , nr ) complex symbols per channel use. The well-known Golden code is an example of a full-rate, full-diversity STBC for two transmit antennas. Its ML-decoding complexity is of the order of M 2.5 for square M -QAM. The Silver code for two transmit antennas has all the desirable properties of the Golden code except its coding gain, but offers lower ML-decoding complexity of the order of M 2 . Importantly, the slight loss in coding gain is negligible compared to the advantage it offers in terms of lowering the ML-decoding complexity. For higher number of transmit antennas, the best known codes are the Perfect codes, which are full-rate, full-diversity, information lossless codes (for nr ≥ nt ) but have a high ML-decoding complexity of the order of M n t n min (for n r
doi_str_mv 10.1109/TIT.2011.2162276
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2011_2162276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6006602</ieee_id><sourcerecordid>2469306971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-72bea402326f7a9550a11d8319d1b03c48ab8583e6a85bb6d84bb9a15241c4ad3</originalsourceid><addsrcrecordid>eNo9kNFLwzAQh4MoOKfvA1-G4GNrLk3S5FGKzsHAB-dzuLRX6KjrTDZB_3pTNvZ0HPf97viOsRnwHIDbp_VynQsOkAvQQpT6gk1AqTKzWslLNuEcTGalNNfsJsZNaqUCMWGzBW0pYN_9UTP_6PofCvNqaCjesqsW-0h3pzpln68v6-otW70vltXzKqsLLfZZKTyh5KIQui3RKsURoDEF2AY8L2pp0BtlCtJolPe6MdJ7i6CEhFpiU0zZw3HvLgzfB4p7txkOYZtOOmMl2FKWNkH8CNVhiDFQ63ah-8Lw64C7Ud8lfTfqu5N-ijye9mKssW8DbusunnNCKpW-MXL3R64jovNYc651svoHy8RgHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>894197479</pqid></control><display><type>article</type><title>Generalized Silver Codes</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Srinath, K. P. ; Rajan, B. S.</creator><creatorcontrib>Srinath, K. P. ; Rajan, B. S.</creatorcontrib><description>For an nt transmit, nr receive antenna system ( nt × nr system), a full-rate space time block code (STBC) transmits at least nmin = min ( nt , nr ) complex symbols per channel use. The well-known Golden code is an example of a full-rate, full-diversity STBC for two transmit antennas. Its ML-decoding complexity is of the order of M 2.5 for square M -QAM. The Silver code for two transmit antennas has all the desirable properties of the Golden code except its coding gain, but offers lower ML-decoding complexity of the order of M 2 . Importantly, the slight loss in coding gain is negligible compared to the advantage it offers in terms of lowering the ML-decoding complexity. For higher number of transmit antennas, the best known codes are the Perfect codes, which are full-rate, full-diversity, information lossless codes (for nr ≥ nt ) but have a high ML-decoding complexity of the order of M n t n min (for n r &lt;; nt, the punctured Perfect codes are considered). In this paper, a scheme to obtain full-rate STBCs for 2a transmit antennas and any n r with reduced ML-decoding complexity of the order of M n t ( n min-3/4)-0.5 is presented. The codes constructed are also information lossless for nr ≥ nt , like the Perfect codes, and allow higher mutual information than the comparable punctured Perfect codes for nr &lt;; nt . These codes are referred to as the generalized Silver codes, since they enjoy the same desirable properties as the comparable Perfect codes (except possibly the coding gain) with lower ML-decoding complexity, analogous to the Silver code and the Golden code for two transmit antennas. Simulation results of the symbol error rates for four and eight transmit antennas show that the generalized Silver codes match the punctured Perfect codes in error performance while offering lower ML- decoding complexity.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2011.2162276</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Antennas ; Anticommuting matrices ; Applied sciences ; Block codes ; Coding theory ; Coding, codes ; Complexity theory ; Data transmission ; Encoding ; ergodic capacity ; Exact sciences and technology ; full-rate space-time block codes ; information losslessness ; Information theory ; Information, signal and communications theory ; low ML- decoding complexity ; MIMO ; Mutual information ; Radiocommunications ; Receiving antennas ; Signal and communications theory ; Silver ; Simulation ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission and modulation (techniques and equipments) ; Transmitting antennas</subject><ispartof>IEEE transactions on information theory, 2011-09, Vol.57 (9), p.6134-6147</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-72bea402326f7a9550a11d8319d1b03c48ab8583e6a85bb6d84bb9a15241c4ad3</citedby><cites>FETCH-LOGICAL-c362t-72bea402326f7a9550a11d8319d1b03c48ab8583e6a85bb6d84bb9a15241c4ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6006602$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24554486$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Srinath, K. P.</creatorcontrib><creatorcontrib>Rajan, B. S.</creatorcontrib><title>Generalized Silver Codes</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>For an nt transmit, nr receive antenna system ( nt × nr system), a full-rate space time block code (STBC) transmits at least nmin = min ( nt , nr ) complex symbols per channel use. The well-known Golden code is an example of a full-rate, full-diversity STBC for two transmit antennas. Its ML-decoding complexity is of the order of M 2.5 for square M -QAM. The Silver code for two transmit antennas has all the desirable properties of the Golden code except its coding gain, but offers lower ML-decoding complexity of the order of M 2 . Importantly, the slight loss in coding gain is negligible compared to the advantage it offers in terms of lowering the ML-decoding complexity. For higher number of transmit antennas, the best known codes are the Perfect codes, which are full-rate, full-diversity, information lossless codes (for nr ≥ nt ) but have a high ML-decoding complexity of the order of M n t n min (for n r &lt;; nt, the punctured Perfect codes are considered). In this paper, a scheme to obtain full-rate STBCs for 2a transmit antennas and any n r with reduced ML-decoding complexity of the order of M n t ( n min-3/4)-0.5 is presented. The codes constructed are also information lossless for nr ≥ nt , like the Perfect codes, and allow higher mutual information than the comparable punctured Perfect codes for nr &lt;; nt . These codes are referred to as the generalized Silver codes, since they enjoy the same desirable properties as the comparable Perfect codes (except possibly the coding gain) with lower ML-decoding complexity, analogous to the Silver code and the Golden code for two transmit antennas. Simulation results of the symbol error rates for four and eight transmit antennas show that the generalized Silver codes match the punctured Perfect codes in error performance while offering lower ML- decoding complexity.</description><subject>Antennas</subject><subject>Anticommuting matrices</subject><subject>Applied sciences</subject><subject>Block codes</subject><subject>Coding theory</subject><subject>Coding, codes</subject><subject>Complexity theory</subject><subject>Data transmission</subject><subject>Encoding</subject><subject>ergodic capacity</subject><subject>Exact sciences and technology</subject><subject>full-rate space-time block codes</subject><subject>information losslessness</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>low ML- decoding complexity</subject><subject>MIMO</subject><subject>Mutual information</subject><subject>Radiocommunications</subject><subject>Receiving antennas</subject><subject>Signal and communications theory</subject><subject>Silver</subject><subject>Simulation</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Transmitting antennas</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kNFLwzAQh4MoOKfvA1-G4GNrLk3S5FGKzsHAB-dzuLRX6KjrTDZB_3pTNvZ0HPf97viOsRnwHIDbp_VynQsOkAvQQpT6gk1AqTKzWslLNuEcTGalNNfsJsZNaqUCMWGzBW0pYN_9UTP_6PofCvNqaCjesqsW-0h3pzpln68v6-otW70vltXzKqsLLfZZKTyh5KIQui3RKsURoDEF2AY8L2pp0BtlCtJolPe6MdJ7i6CEhFpiU0zZw3HvLgzfB4p7txkOYZtOOmMl2FKWNkH8CNVhiDFQ63ah-8Lw64C7Ud8lfTfqu5N-ijye9mKssW8DbusunnNCKpW-MXL3R64jovNYc651svoHy8RgHg</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Srinath, K. P.</creator><creator>Rajan, B. S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110901</creationdate><title>Generalized Silver Codes</title><author>Srinath, K. P. ; Rajan, B. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-72bea402326f7a9550a11d8319d1b03c48ab8583e6a85bb6d84bb9a15241c4ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Antennas</topic><topic>Anticommuting matrices</topic><topic>Applied sciences</topic><topic>Block codes</topic><topic>Coding theory</topic><topic>Coding, codes</topic><topic>Complexity theory</topic><topic>Data transmission</topic><topic>Encoding</topic><topic>ergodic capacity</topic><topic>Exact sciences and technology</topic><topic>full-rate space-time block codes</topic><topic>information losslessness</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>low ML- decoding complexity</topic><topic>MIMO</topic><topic>Mutual information</topic><topic>Radiocommunications</topic><topic>Receiving antennas</topic><topic>Signal and communications theory</topic><topic>Silver</topic><topic>Simulation</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Transmitting antennas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srinath, K. P.</creatorcontrib><creatorcontrib>Rajan, B. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srinath, K. P.</au><au>Rajan, B. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Silver Codes</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2011-09-01</date><risdate>2011</risdate><volume>57</volume><issue>9</issue><spage>6134</spage><epage>6147</epage><pages>6134-6147</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>For an nt transmit, nr receive antenna system ( nt × nr system), a full-rate space time block code (STBC) transmits at least nmin = min ( nt , nr ) complex symbols per channel use. The well-known Golden code is an example of a full-rate, full-diversity STBC for two transmit antennas. Its ML-decoding complexity is of the order of M 2.5 for square M -QAM. The Silver code for two transmit antennas has all the desirable properties of the Golden code except its coding gain, but offers lower ML-decoding complexity of the order of M 2 . Importantly, the slight loss in coding gain is negligible compared to the advantage it offers in terms of lowering the ML-decoding complexity. For higher number of transmit antennas, the best known codes are the Perfect codes, which are full-rate, full-diversity, information lossless codes (for nr ≥ nt ) but have a high ML-decoding complexity of the order of M n t n min (for n r &lt;; nt, the punctured Perfect codes are considered). In this paper, a scheme to obtain full-rate STBCs for 2a transmit antennas and any n r with reduced ML-decoding complexity of the order of M n t ( n min-3/4)-0.5 is presented. The codes constructed are also information lossless for nr ≥ nt , like the Perfect codes, and allow higher mutual information than the comparable punctured Perfect codes for nr &lt;; nt . These codes are referred to as the generalized Silver codes, since they enjoy the same desirable properties as the comparable Perfect codes (except possibly the coding gain) with lower ML-decoding complexity, analogous to the Silver code and the Golden code for two transmit antennas. Simulation results of the symbol error rates for four and eight transmit antennas show that the generalized Silver codes match the punctured Perfect codes in error performance while offering lower ML- decoding complexity.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2011.2162276</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2011-09, Vol.57 (9), p.6134-6147
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2011_2162276
source IEEE Electronic Library (IEL) Journals
subjects Antennas
Anticommuting matrices
Applied sciences
Block codes
Coding theory
Coding, codes
Complexity theory
Data transmission
Encoding
ergodic capacity
Exact sciences and technology
full-rate space-time block codes
information losslessness
Information theory
Information, signal and communications theory
low ML- decoding complexity
MIMO
Mutual information
Radiocommunications
Receiving antennas
Signal and communications theory
Silver
Simulation
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Transmission and modulation (techniques and equipments)
Transmitting antennas
title Generalized Silver Codes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A17%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Silver%20Codes&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Srinath,%20K.%20P.&rft.date=2011-09-01&rft.volume=57&rft.issue=9&rft.spage=6134&rft.epage=6147&rft.pages=6134-6147&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2011.2162276&rft_dat=%3Cproquest_cross%3E2469306971%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-72bea402326f7a9550a11d8319d1b03c48ab8583e6a85bb6d84bb9a15241c4ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=894197479&rft_id=info:pmid/&rft_ieee_id=6006602&rfr_iscdi=true