Loading…

Revisiting LFSRs for Cryptographic Applications

Linear finite state machines (LFSMs) are particular primitives widely used in information theory, coding theory and cryptography. Among those linear automata, a particular case of study is linear feedback shift registers (LFSRs) used in many cryptographic applications such as design of stream cipher...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2011-12, Vol.57 (12), p.8095-8113
Main Authors: Arnault, F., Berger, T., Minier, M., Pousse, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c387t-828fa67159361cd6ccac3453f3fcd25e956b685c21b08e1882cdce7d534f07793
cites cdi_FETCH-LOGICAL-c387t-828fa67159361cd6ccac3453f3fcd25e956b685c21b08e1882cdce7d534f07793
container_end_page 8113
container_issue 12
container_start_page 8095
container_title IEEE transactions on information theory
container_volume 57
creator Arnault, F.
Berger, T.
Minier, M.
Pousse, B.
description Linear finite state machines (LFSMs) are particular primitives widely used in information theory, coding theory and cryptography. Among those linear automata, a particular case of study is linear feedback shift registers (LFSRs) used in many cryptographic applications such as design of stream ciphers or pseudo-random generation. LFSRs could be seen as particular LFSMs without inputs. In this paper, we first recall the description of LFSMs using traditional matrices representation. Then, we introduce a new matrices representation with polynomial fractional coefficients. This new representation leads to sparse representations and implementations. As direct applications, we focus our work on the Windmill generators case, used for example in the E0 stream cipher and on other general applications that use this new representation. In a second part, a new design criterion called diffusion delay for LFSRs is introduced and well compared with existing related notions. This criterion represents the diffusion capacity of an LFSR. Thus, using the matrices representation, we present a new algorithm to randomly pick LFSRs with good properties (including the new one) and sparse descriptions dedicated to hardware and software designs. We present some examples of LFSRs generated using our algorithm to show the relevance of our approach.
doi_str_mv 10.1109/TIT.2011.2164234
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2011_2164234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6018304</ieee_id><sourcerecordid>1671272883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-828fa67159361cd6ccac3453f3fcd25e956b685c21b08e1882cdce7d534f07793</originalsourceid><addsrcrecordid>eNpdkU1rAjEQhkNpodb2XuhFCoX2sJrJ1yZHkVqFhYK15xBjViPb3W2yCv777qJ46GmYmWdeZt5B6BHwEACr0XK-HBIMMCQgGKHsCvWA8zRRgrNr1MMYZKIYk7foLsZdmzIOpIdGC3fw0Te-3Ayy6dciDvIqDCbhWDfVJph66-1gXNeFt6bxVRnv0U1uiugezrGPvqfvy8ksyT4_5pNxllgq0yaRROZGpMAVFWDXwlpjKeM0p7ldE-4UFyshuSWwwtKBlMSurUvXnLIcp6miffR20t2aQtfB_5hw1JXxejbOdFfDWEgqOD1Ay76e2DpUv3sXG_3jo3VFYUpX7aOGdhGSEilpiz7_Q3fVPpTtJVphpYTAotPDJ8iGKsbg8ssCgHVntm7N1p3Z-mx2O_Jy1jXRmiIPprQ-XuYIp6kQ0Ek_nTjvnLu0Rfscihn9A1t9hHk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>909966061</pqid></control><display><type>article</type><title>Revisiting LFSRs for Cryptographic Applications</title><source>IEEE Xplore (Online service)</source><creator>Arnault, F. ; Berger, T. ; Minier, M. ; Pousse, B.</creator><creatorcontrib>Arnault, F. ; Berger, T. ; Minier, M. ; Pousse, B.</creatorcontrib><description>Linear finite state machines (LFSMs) are particular primitives widely used in information theory, coding theory and cryptography. Among those linear automata, a particular case of study is linear feedback shift registers (LFSRs) used in many cryptographic applications such as design of stream ciphers or pseudo-random generation. LFSRs could be seen as particular LFSMs without inputs. In this paper, we first recall the description of LFSMs using traditional matrices representation. Then, we introduce a new matrices representation with polynomial fractional coefficients. This new representation leads to sparse representations and implementations. As direct applications, we focus our work on the Windmill generators case, used for example in the E0 stream cipher and on other general applications that use this new representation. In a second part, a new design criterion called diffusion delay for LFSRs is introduced and well compared with existing related notions. This criterion represents the diffusion capacity of an LFSR. Thus, using the matrices representation, we present a new algorithm to randomly pick LFSRs with good properties (including the new one) and sparse descriptions dedicated to hardware and software designs. We present some examples of LFSRs generated using our algorithm to show the relevance of our approach.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2011.2164234</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Automata ; Coding theory ; Coding, codes ; Criteria ; Cryptography ; Exact sciences and technology ; Finite state machines ; Information theory ; Information, signal and communications theory ; linear feedback shift registers (LFSRs) ; linear finite state machines (LFSMs) ; m -sequences ; Mathematical analysis ; Matrices ; Matrix methods ; Polynomials ; Representations ; Signal and communications theory ; Sparsity ; Telecommunications and information theory</subject><ispartof>IEEE transactions on information theory, 2011-12, Vol.57 (12), p.8095-8113</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-828fa67159361cd6ccac3453f3fcd25e956b685c21b08e1882cdce7d534f07793</citedby><cites>FETCH-LOGICAL-c387t-828fa67159361cd6ccac3453f3fcd25e956b685c21b08e1882cdce7d534f07793</cites><orcidid>0000-0003-3252-2578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6018304$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25376611$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00683653$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Arnault, F.</creatorcontrib><creatorcontrib>Berger, T.</creatorcontrib><creatorcontrib>Minier, M.</creatorcontrib><creatorcontrib>Pousse, B.</creatorcontrib><title>Revisiting LFSRs for Cryptographic Applications</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Linear finite state machines (LFSMs) are particular primitives widely used in information theory, coding theory and cryptography. Among those linear automata, a particular case of study is linear feedback shift registers (LFSRs) used in many cryptographic applications such as design of stream ciphers or pseudo-random generation. LFSRs could be seen as particular LFSMs without inputs. In this paper, we first recall the description of LFSMs using traditional matrices representation. Then, we introduce a new matrices representation with polynomial fractional coefficients. This new representation leads to sparse representations and implementations. As direct applications, we focus our work on the Windmill generators case, used for example in the E0 stream cipher and on other general applications that use this new representation. In a second part, a new design criterion called diffusion delay for LFSRs is introduced and well compared with existing related notions. This criterion represents the diffusion capacity of an LFSR. Thus, using the matrices representation, we present a new algorithm to randomly pick LFSRs with good properties (including the new one) and sparse descriptions dedicated to hardware and software designs. We present some examples of LFSRs generated using our algorithm to show the relevance of our approach.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Automata</subject><subject>Coding theory</subject><subject>Coding, codes</subject><subject>Criteria</subject><subject>Cryptography</subject><subject>Exact sciences and technology</subject><subject>Finite state machines</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>linear feedback shift registers (LFSRs)</subject><subject>linear finite state machines (LFSMs)</subject><subject>m -sequences</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>Polynomials</subject><subject>Representations</subject><subject>Signal and communications theory</subject><subject>Sparsity</subject><subject>Telecommunications and information theory</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkU1rAjEQhkNpodb2XuhFCoX2sJrJ1yZHkVqFhYK15xBjViPb3W2yCv777qJ46GmYmWdeZt5B6BHwEACr0XK-HBIMMCQgGKHsCvWA8zRRgrNr1MMYZKIYk7foLsZdmzIOpIdGC3fw0Te-3Ayy6dciDvIqDCbhWDfVJph66-1gXNeFt6bxVRnv0U1uiugezrGPvqfvy8ksyT4_5pNxllgq0yaRROZGpMAVFWDXwlpjKeM0p7ldE-4UFyshuSWwwtKBlMSurUvXnLIcp6miffR20t2aQtfB_5hw1JXxejbOdFfDWEgqOD1Ay76e2DpUv3sXG_3jo3VFYUpX7aOGdhGSEilpiz7_Q3fVPpTtJVphpYTAotPDJ8iGKsbg8ssCgHVntm7N1p3Z-mx2O_Jy1jXRmiIPprQ-XuYIp6kQ0Ek_nTjvnLu0Rfscihn9A1t9hHk</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Arnault, F.</creator><creator>Berger, T.</creator><creator>Minier, M.</creator><creator>Pousse, B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3252-2578</orcidid></search><sort><creationdate>20111201</creationdate><title>Revisiting LFSRs for Cryptographic Applications</title><author>Arnault, F. ; Berger, T. ; Minier, M. ; Pousse, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-828fa67159361cd6ccac3453f3fcd25e956b685c21b08e1882cdce7d534f07793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Automata</topic><topic>Coding theory</topic><topic>Coding, codes</topic><topic>Criteria</topic><topic>Cryptography</topic><topic>Exact sciences and technology</topic><topic>Finite state machines</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>linear feedback shift registers (LFSRs)</topic><topic>linear finite state machines (LFSMs)</topic><topic>m -sequences</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>Polynomials</topic><topic>Representations</topic><topic>Signal and communications theory</topic><topic>Sparsity</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnault, F.</creatorcontrib><creatorcontrib>Berger, T.</creatorcontrib><creatorcontrib>Minier, M.</creatorcontrib><creatorcontrib>Pousse, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnault, F.</au><au>Berger, T.</au><au>Minier, M.</au><au>Pousse, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting LFSRs for Cryptographic Applications</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>57</volume><issue>12</issue><spage>8095</spage><epage>8113</epage><pages>8095-8113</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Linear finite state machines (LFSMs) are particular primitives widely used in information theory, coding theory and cryptography. Among those linear automata, a particular case of study is linear feedback shift registers (LFSRs) used in many cryptographic applications such as design of stream ciphers or pseudo-random generation. LFSRs could be seen as particular LFSMs without inputs. In this paper, we first recall the description of LFSMs using traditional matrices representation. Then, we introduce a new matrices representation with polynomial fractional coefficients. This new representation leads to sparse representations and implementations. As direct applications, we focus our work on the Windmill generators case, used for example in the E0 stream cipher and on other general applications that use this new representation. In a second part, a new design criterion called diffusion delay for LFSRs is introduced and well compared with existing related notions. This criterion represents the diffusion capacity of an LFSR. Thus, using the matrices representation, we present a new algorithm to randomly pick LFSRs with good properties (including the new one) and sparse descriptions dedicated to hardware and software designs. We present some examples of LFSRs generated using our algorithm to show the relevance of our approach.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2011.2164234</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3252-2578</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2011-12, Vol.57 (12), p.8095-8113
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2011_2164234
source IEEE Xplore (Online service)
subjects Algorithms
Applied sciences
Automata
Coding theory
Coding, codes
Criteria
Cryptography
Exact sciences and technology
Finite state machines
Information theory
Information, signal and communications theory
linear feedback shift registers (LFSRs)
linear finite state machines (LFSMs)
m -sequences
Mathematical analysis
Matrices
Matrix methods
Polynomials
Representations
Signal and communications theory
Sparsity
Telecommunications and information theory
title Revisiting LFSRs for Cryptographic Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20LFSRs%20for%20Cryptographic%20Applications&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Arnault,%20F.&rft.date=2011-12-01&rft.volume=57&rft.issue=12&rft.spage=8095&rft.epage=8113&rft.pages=8095-8113&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2011.2164234&rft_dat=%3Cproquest_cross%3E1671272883%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-828fa67159361cd6ccac3453f3fcd25e956b685c21b08e1882cdce7d534f07793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=909966061&rft_id=info:pmid/&rft_ieee_id=6018304&rfr_iscdi=true