Loading…
Revisiting LFSRs for Cryptographic Applications
Linear finite state machines (LFSMs) are particular primitives widely used in information theory, coding theory and cryptography. Among those linear automata, a particular case of study is linear feedback shift registers (LFSRs) used in many cryptographic applications such as design of stream cipher...
Saved in:
Published in: | IEEE transactions on information theory 2011-12, Vol.57 (12), p.8095-8113 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c387t-828fa67159361cd6ccac3453f3fcd25e956b685c21b08e1882cdce7d534f07793 |
---|---|
cites | cdi_FETCH-LOGICAL-c387t-828fa67159361cd6ccac3453f3fcd25e956b685c21b08e1882cdce7d534f07793 |
container_end_page | 8113 |
container_issue | 12 |
container_start_page | 8095 |
container_title | IEEE transactions on information theory |
container_volume | 57 |
creator | Arnault, F. Berger, T. Minier, M. Pousse, B. |
description | Linear finite state machines (LFSMs) are particular primitives widely used in information theory, coding theory and cryptography. Among those linear automata, a particular case of study is linear feedback shift registers (LFSRs) used in many cryptographic applications such as design of stream ciphers or pseudo-random generation. LFSRs could be seen as particular LFSMs without inputs. In this paper, we first recall the description of LFSMs using traditional matrices representation. Then, we introduce a new matrices representation with polynomial fractional coefficients. This new representation leads to sparse representations and implementations. As direct applications, we focus our work on the Windmill generators case, used for example in the E0 stream cipher and on other general applications that use this new representation. In a second part, a new design criterion called diffusion delay for LFSRs is introduced and well compared with existing related notions. This criterion represents the diffusion capacity of an LFSR. Thus, using the matrices representation, we present a new algorithm to randomly pick LFSRs with good properties (including the new one) and sparse descriptions dedicated to hardware and software designs. We present some examples of LFSRs generated using our algorithm to show the relevance of our approach. |
doi_str_mv | 10.1109/TIT.2011.2164234 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2011_2164234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6018304</ieee_id><sourcerecordid>1671272883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-828fa67159361cd6ccac3453f3fcd25e956b685c21b08e1882cdce7d534f07793</originalsourceid><addsrcrecordid>eNpdkU1rAjEQhkNpodb2XuhFCoX2sJrJ1yZHkVqFhYK15xBjViPb3W2yCv777qJ46GmYmWdeZt5B6BHwEACr0XK-HBIMMCQgGKHsCvWA8zRRgrNr1MMYZKIYk7foLsZdmzIOpIdGC3fw0Te-3Ayy6dciDvIqDCbhWDfVJph66-1gXNeFt6bxVRnv0U1uiugezrGPvqfvy8ksyT4_5pNxllgq0yaRROZGpMAVFWDXwlpjKeM0p7ldE-4UFyshuSWwwtKBlMSurUvXnLIcp6miffR20t2aQtfB_5hw1JXxejbOdFfDWEgqOD1Ay76e2DpUv3sXG_3jo3VFYUpX7aOGdhGSEilpiz7_Q3fVPpTtJVphpYTAotPDJ8iGKsbg8ssCgHVntm7N1p3Z-mx2O_Jy1jXRmiIPprQ-XuYIp6kQ0Ek_nTjvnLu0Rfscihn9A1t9hHk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>909966061</pqid></control><display><type>article</type><title>Revisiting LFSRs for Cryptographic Applications</title><source>IEEE Xplore (Online service)</source><creator>Arnault, F. ; Berger, T. ; Minier, M. ; Pousse, B.</creator><creatorcontrib>Arnault, F. ; Berger, T. ; Minier, M. ; Pousse, B.</creatorcontrib><description>Linear finite state machines (LFSMs) are particular primitives widely used in information theory, coding theory and cryptography. Among those linear automata, a particular case of study is linear feedback shift registers (LFSRs) used in many cryptographic applications such as design of stream ciphers or pseudo-random generation. LFSRs could be seen as particular LFSMs without inputs. In this paper, we first recall the description of LFSMs using traditional matrices representation. Then, we introduce a new matrices representation with polynomial fractional coefficients. This new representation leads to sparse representations and implementations. As direct applications, we focus our work on the Windmill generators case, used for example in the E0 stream cipher and on other general applications that use this new representation. In a second part, a new design criterion called diffusion delay for LFSRs is introduced and well compared with existing related notions. This criterion represents the diffusion capacity of an LFSR. Thus, using the matrices representation, we present a new algorithm to randomly pick LFSRs with good properties (including the new one) and sparse descriptions dedicated to hardware and software designs. We present some examples of LFSRs generated using our algorithm to show the relevance of our approach.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2011.2164234</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Automata ; Coding theory ; Coding, codes ; Criteria ; Cryptography ; Exact sciences and technology ; Finite state machines ; Information theory ; Information, signal and communications theory ; linear feedback shift registers (LFSRs) ; linear finite state machines (LFSMs) ; m -sequences ; Mathematical analysis ; Matrices ; Matrix methods ; Polynomials ; Representations ; Signal and communications theory ; Sparsity ; Telecommunications and information theory</subject><ispartof>IEEE transactions on information theory, 2011-12, Vol.57 (12), p.8095-8113</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-828fa67159361cd6ccac3453f3fcd25e956b685c21b08e1882cdce7d534f07793</citedby><cites>FETCH-LOGICAL-c387t-828fa67159361cd6ccac3453f3fcd25e956b685c21b08e1882cdce7d534f07793</cites><orcidid>0000-0003-3252-2578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6018304$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25376611$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00683653$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Arnault, F.</creatorcontrib><creatorcontrib>Berger, T.</creatorcontrib><creatorcontrib>Minier, M.</creatorcontrib><creatorcontrib>Pousse, B.</creatorcontrib><title>Revisiting LFSRs for Cryptographic Applications</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Linear finite state machines (LFSMs) are particular primitives widely used in information theory, coding theory and cryptography. Among those linear automata, a particular case of study is linear feedback shift registers (LFSRs) used in many cryptographic applications such as design of stream ciphers or pseudo-random generation. LFSRs could be seen as particular LFSMs without inputs. In this paper, we first recall the description of LFSMs using traditional matrices representation. Then, we introduce a new matrices representation with polynomial fractional coefficients. This new representation leads to sparse representations and implementations. As direct applications, we focus our work on the Windmill generators case, used for example in the E0 stream cipher and on other general applications that use this new representation. In a second part, a new design criterion called diffusion delay for LFSRs is introduced and well compared with existing related notions. This criterion represents the diffusion capacity of an LFSR. Thus, using the matrices representation, we present a new algorithm to randomly pick LFSRs with good properties (including the new one) and sparse descriptions dedicated to hardware and software designs. We present some examples of LFSRs generated using our algorithm to show the relevance of our approach.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Automata</subject><subject>Coding theory</subject><subject>Coding, codes</subject><subject>Criteria</subject><subject>Cryptography</subject><subject>Exact sciences and technology</subject><subject>Finite state machines</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>linear feedback shift registers (LFSRs)</subject><subject>linear finite state machines (LFSMs)</subject><subject>m -sequences</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>Polynomials</subject><subject>Representations</subject><subject>Signal and communications theory</subject><subject>Sparsity</subject><subject>Telecommunications and information theory</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkU1rAjEQhkNpodb2XuhFCoX2sJrJ1yZHkVqFhYK15xBjViPb3W2yCv777qJ46GmYmWdeZt5B6BHwEACr0XK-HBIMMCQgGKHsCvWA8zRRgrNr1MMYZKIYk7foLsZdmzIOpIdGC3fw0Te-3Ayy6dciDvIqDCbhWDfVJph66-1gXNeFt6bxVRnv0U1uiugezrGPvqfvy8ksyT4_5pNxllgq0yaRROZGpMAVFWDXwlpjKeM0p7ldE-4UFyshuSWwwtKBlMSurUvXnLIcp6miffR20t2aQtfB_5hw1JXxejbOdFfDWEgqOD1Ay76e2DpUv3sXG_3jo3VFYUpX7aOGdhGSEilpiz7_Q3fVPpTtJVphpYTAotPDJ8iGKsbg8ssCgHVntm7N1p3Z-mx2O_Jy1jXRmiIPprQ-XuYIp6kQ0Ek_nTjvnLu0Rfscihn9A1t9hHk</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Arnault, F.</creator><creator>Berger, T.</creator><creator>Minier, M.</creator><creator>Pousse, B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3252-2578</orcidid></search><sort><creationdate>20111201</creationdate><title>Revisiting LFSRs for Cryptographic Applications</title><author>Arnault, F. ; Berger, T. ; Minier, M. ; Pousse, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-828fa67159361cd6ccac3453f3fcd25e956b685c21b08e1882cdce7d534f07793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Automata</topic><topic>Coding theory</topic><topic>Coding, codes</topic><topic>Criteria</topic><topic>Cryptography</topic><topic>Exact sciences and technology</topic><topic>Finite state machines</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>linear feedback shift registers (LFSRs)</topic><topic>linear finite state machines (LFSMs)</topic><topic>m -sequences</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>Polynomials</topic><topic>Representations</topic><topic>Signal and communications theory</topic><topic>Sparsity</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnault, F.</creatorcontrib><creatorcontrib>Berger, T.</creatorcontrib><creatorcontrib>Minier, M.</creatorcontrib><creatorcontrib>Pousse, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnault, F.</au><au>Berger, T.</au><au>Minier, M.</au><au>Pousse, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting LFSRs for Cryptographic Applications</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>57</volume><issue>12</issue><spage>8095</spage><epage>8113</epage><pages>8095-8113</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Linear finite state machines (LFSMs) are particular primitives widely used in information theory, coding theory and cryptography. Among those linear automata, a particular case of study is linear feedback shift registers (LFSRs) used in many cryptographic applications such as design of stream ciphers or pseudo-random generation. LFSRs could be seen as particular LFSMs without inputs. In this paper, we first recall the description of LFSMs using traditional matrices representation. Then, we introduce a new matrices representation with polynomial fractional coefficients. This new representation leads to sparse representations and implementations. As direct applications, we focus our work on the Windmill generators case, used for example in the E0 stream cipher and on other general applications that use this new representation. In a second part, a new design criterion called diffusion delay for LFSRs is introduced and well compared with existing related notions. This criterion represents the diffusion capacity of an LFSR. Thus, using the matrices representation, we present a new algorithm to randomly pick LFSRs with good properties (including the new one) and sparse descriptions dedicated to hardware and software designs. We present some examples of LFSRs generated using our algorithm to show the relevance of our approach.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2011.2164234</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3252-2578</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2011-12, Vol.57 (12), p.8095-8113 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2011_2164234 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Applied sciences Automata Coding theory Coding, codes Criteria Cryptography Exact sciences and technology Finite state machines Information theory Information, signal and communications theory linear feedback shift registers (LFSRs) linear finite state machines (LFSMs) m -sequences Mathematical analysis Matrices Matrix methods Polynomials Representations Signal and communications theory Sparsity Telecommunications and information theory |
title | Revisiting LFSRs for Cryptographic Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20LFSRs%20for%20Cryptographic%20Applications&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Arnault,%20F.&rft.date=2011-12-01&rft.volume=57&rft.issue=12&rft.spage=8095&rft.epage=8113&rft.pages=8095-8113&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2011.2164234&rft_dat=%3Cproquest_cross%3E1671272883%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-828fa67159361cd6ccac3453f3fcd25e956b685c21b08e1882cdce7d534f07793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=909966061&rft_id=info:pmid/&rft_ieee_id=6018304&rfr_iscdi=true |