Loading…
MDS Poset-Codes Satisfying the Asymptotic Gilbert-Varshamov Bound in Hamming Weights
We prove that MDS linear poset-codes satisfy Gilbert-Varshamov bound for their Hamming weights asymptotically. We also construct MDS linear poset-codes on arbitrary poset-metric spaces by using the Dilworth's chain decomposition theorem and results about the Hermite interpolation problem over a...
Saved in:
Published in: | IEEE transactions on information theory 2011-12, Vol.57 (12), p.8021-8026 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c353t-9cc1a1bba06e89d9e29e65f2aa759d42aa0410e504fa25c08221f3e54b4b00533 |
---|---|
cites | cdi_FETCH-LOGICAL-c353t-9cc1a1bba06e89d9e29e65f2aa759d42aa0410e504fa25c08221f3e54b4b00533 |
container_end_page | 8026 |
container_issue | 12 |
container_start_page | 8021 |
container_title | IEEE transactions on information theory |
container_volume | 57 |
creator | JONG YOON HYUN LEE, Yoonjin |
description | We prove that MDS linear poset-codes satisfy Gilbert-Varshamov bound for their Hamming weights asymptotically. We also construct MDS linear poset-codes on arbitrary poset-metric spaces by using the Dilworth's chain decomposition theorem and results about the Hermite interpolation problem over a finite field. We prove that there exist linear poset-codes with large weights for both poset-metrics and Hamming metrics, as well. |
doi_str_mv | 10.1109/TIT.2011.2170111 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2011_2170111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6094282</ieee_id><sourcerecordid>2532011191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-9cc1a1bba06e89d9e29e65f2aa759d42aa0410e504fa25c08221f3e54b4b00533</originalsourceid><addsrcrecordid>eNpdkE1rGzEURUVoIW7SfSGbIVDoZpz3NNLMaJm6zQektBC3XQqN_CZWmBk5klzwv6-MTRZZXR469yIOY58Q5oigrpb3yzkHxDnHJgeesBlK2ZSqluIdmwFgWyoh2lP2IcbnfAqJfMaWP749Fr98pFQu_Ipi8WiSi_3OTU9FWlNxHXfjJvnkbHHrho5CKv-YENdm9P-Kr347rQo3FXdmHPeNv-Se1imes_e9GSJ9POYZ-33zfbm4Kx9-3t4vrh9KW8kqlcpaNNh1Bmpq1UoRV1TLnhvTSLUSOUEgkATRGy4ttJxjX5EUnegAZFWdsS-H3U3wL1uKSY8uWhoGM5HfRo11g7ypJBcZvXyDPvttmPLvtAKl6hpEmyE4QDb4GAP1ehPcaMJOI-i9ZZ0t671lfbScK5-PuyZaM_TBTNbF1x6XVZO3ZeYuDpwjotfnGpTgLa_-A1yrg-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>909966048</pqid></control><display><type>article</type><title>MDS Poset-Codes Satisfying the Asymptotic Gilbert-Varshamov Bound in Hamming Weights</title><source>IEEE Electronic Library (IEL) Journals</source><creator>JONG YOON HYUN ; LEE, Yoonjin</creator><creatorcontrib>JONG YOON HYUN ; LEE, Yoonjin</creatorcontrib><description>We prove that MDS linear poset-codes satisfy Gilbert-Varshamov bound for their Hamming weights asymptotically. We also construct MDS linear poset-codes on arbitrary poset-metric spaces by using the Dilworth's chain decomposition theorem and results about the Hermite interpolation problem over a finite field. We prove that there exist linear poset-codes with large weights for both poset-metrics and Hamming metrics, as well.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2011.2170111</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Asymptotic methods ; Asymptotic properties ; Chains ; Codes ; Coding, codes ; Construction ; Decomposition ; Exact sciences and technology ; Gilbert-Varshamov bound ; Hamming weight ; Information theory ; Information, signal and communications theory ; Interpolation ; Mathematical analysis ; MDS poset-code ; Measurement ; poset-isometry ; poset-metric ; Signal and communications theory ; Space vehicles ; Telecommunications and information theory ; Theorems ; Upper bound ; {\cal N}{\cal R}{\cal T} -metric</subject><ispartof>IEEE transactions on information theory, 2011-12, Vol.57 (12), p.8021-8026</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-9cc1a1bba06e89d9e29e65f2aa759d42aa0410e504fa25c08221f3e54b4b00533</citedby><cites>FETCH-LOGICAL-c353t-9cc1a1bba06e89d9e29e65f2aa759d42aa0410e504fa25c08221f3e54b4b00533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6094282$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25376605$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>JONG YOON HYUN</creatorcontrib><creatorcontrib>LEE, Yoonjin</creatorcontrib><title>MDS Poset-Codes Satisfying the Asymptotic Gilbert-Varshamov Bound in Hamming Weights</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We prove that MDS linear poset-codes satisfy Gilbert-Varshamov bound for their Hamming weights asymptotically. We also construct MDS linear poset-codes on arbitrary poset-metric spaces by using the Dilworth's chain decomposition theorem and results about the Hermite interpolation problem over a finite field. We prove that there exist linear poset-codes with large weights for both poset-metrics and Hamming metrics, as well.</description><subject>Applied sciences</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Chains</subject><subject>Codes</subject><subject>Coding, codes</subject><subject>Construction</subject><subject>Decomposition</subject><subject>Exact sciences and technology</subject><subject>Gilbert-Varshamov bound</subject><subject>Hamming weight</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>MDS poset-code</subject><subject>Measurement</subject><subject>poset-isometry</subject><subject>poset-metric</subject><subject>Signal and communications theory</subject><subject>Space vehicles</subject><subject>Telecommunications and information theory</subject><subject>Theorems</subject><subject>Upper bound</subject><subject>{\cal N}{\cal R}{\cal T} -metric</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkE1rGzEURUVoIW7SfSGbIVDoZpz3NNLMaJm6zQektBC3XQqN_CZWmBk5klzwv6-MTRZZXR469yIOY58Q5oigrpb3yzkHxDnHJgeesBlK2ZSqluIdmwFgWyoh2lP2IcbnfAqJfMaWP749Fr98pFQu_Ipi8WiSi_3OTU9FWlNxHXfjJvnkbHHrho5CKv-YENdm9P-Kr347rQo3FXdmHPeNv-Se1imes_e9GSJ9POYZ-33zfbm4Kx9-3t4vrh9KW8kqlcpaNNh1Bmpq1UoRV1TLnhvTSLUSOUEgkATRGy4ttJxjX5EUnegAZFWdsS-H3U3wL1uKSY8uWhoGM5HfRo11g7ypJBcZvXyDPvttmPLvtAKl6hpEmyE4QDb4GAP1ehPcaMJOI-i9ZZ0t671lfbScK5-PuyZaM_TBTNbF1x6XVZO3ZeYuDpwjotfnGpTgLa_-A1yrg-I</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>JONG YOON HYUN</creator><creator>LEE, Yoonjin</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20111201</creationdate><title>MDS Poset-Codes Satisfying the Asymptotic Gilbert-Varshamov Bound in Hamming Weights</title><author>JONG YOON HYUN ; LEE, Yoonjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-9cc1a1bba06e89d9e29e65f2aa759d42aa0410e504fa25c08221f3e54b4b00533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Chains</topic><topic>Codes</topic><topic>Coding, codes</topic><topic>Construction</topic><topic>Decomposition</topic><topic>Exact sciences and technology</topic><topic>Gilbert-Varshamov bound</topic><topic>Hamming weight</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>MDS poset-code</topic><topic>Measurement</topic><topic>poset-isometry</topic><topic>poset-metric</topic><topic>Signal and communications theory</topic><topic>Space vehicles</topic><topic>Telecommunications and information theory</topic><topic>Theorems</topic><topic>Upper bound</topic><topic>{\cal N}{\cal R}{\cal T} -metric</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JONG YOON HYUN</creatorcontrib><creatorcontrib>LEE, Yoonjin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JONG YOON HYUN</au><au>LEE, Yoonjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MDS Poset-Codes Satisfying the Asymptotic Gilbert-Varshamov Bound in Hamming Weights</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>57</volume><issue>12</issue><spage>8021</spage><epage>8026</epage><pages>8021-8026</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We prove that MDS linear poset-codes satisfy Gilbert-Varshamov bound for their Hamming weights asymptotically. We also construct MDS linear poset-codes on arbitrary poset-metric spaces by using the Dilworth's chain decomposition theorem and results about the Hermite interpolation problem over a finite field. We prove that there exist linear poset-codes with large weights for both poset-metrics and Hamming metrics, as well.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2011.2170111</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2011-12, Vol.57 (12), p.8021-8026 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2011_2170111 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Asymptotic methods Asymptotic properties Chains Codes Coding, codes Construction Decomposition Exact sciences and technology Gilbert-Varshamov bound Hamming weight Information theory Information, signal and communications theory Interpolation Mathematical analysis MDS poset-code Measurement poset-isometry poset-metric Signal and communications theory Space vehicles Telecommunications and information theory Theorems Upper bound {\cal N}{\cal R}{\cal T} -metric |
title | MDS Poset-Codes Satisfying the Asymptotic Gilbert-Varshamov Bound in Hamming Weights |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MDS%20Poset-Codes%20Satisfying%20the%20Asymptotic%20Gilbert-Varshamov%20Bound%20in%20Hamming%20Weights&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=JONG%20YOON%20HYUN&rft.date=2011-12-01&rft.volume=57&rft.issue=12&rft.spage=8021&rft.epage=8026&rft.pages=8021-8026&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2011.2170111&rft_dat=%3Cproquest_cross%3E2532011191%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-9cc1a1bba06e89d9e29e65f2aa759d42aa0410e504fa25c08221f3e54b4b00533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=909966048&rft_id=info:pmid/&rft_ieee_id=6094282&rfr_iscdi=true |