Loading…

Array Gain in the DMT Framework for MIMO Channels

Following the seminal work by Zheng and Tse on the diversity and multiplexing tradeoff (DMT) of multiple-input multiple-output (MIMO) channels, in this paper, we introduce the array gain to investigate the fundamental relation between transmission rate and reliability in MIMO systems. The array gain...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2012-07, Vol.58 (7), p.4577-4593
Main Authors: Ordóñez, Luis G., Palomar, Daniel P., Rodríguez Fonollosa, Javier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Following the seminal work by Zheng and Tse on the diversity and multiplexing tradeoff (DMT) of multiple-input multiple-output (MIMO) channels, in this paper, we introduce the array gain to investigate the fundamental relation between transmission rate and reliability in MIMO systems. The array gain gives information on the power offset that results from exploiting channel state information at the transmitter or as a consequence of the channel model. Hence, the diversity, multiplexing, and array gain (DMA) analysis is able to cope with the limitations of the original DMT and provide an operational meaning in the sense that the DMA gains of a particular system can be directly translated into a parameterized characterization of its associated outage probability performance. In this paper, we derive the best DMA gains achievable by any scheme employing isotropic signaling in uncorrelated Rayleigh, semicorrelated Rayleigh, and uncorrelated Rician block-fading MIMO channels. We use these results to analyze the effect of important channel parameters on the outage performance at different points of the DMT curve.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2012.2191933