Loading…
Reduction and Fixed Points of Boolean Networks and Linear Network Coding Solvability
Linear network coding transmits data through networks by letting the intermediate nodes combine the messages they receive and forward the combinations toward their destinations. The solvability problem asks whether the demands of all the destinations can be simultaneously satisfied by using linear n...
Saved in:
Published in: | IEEE transactions on information theory 2016-05, Vol.62 (5), p.2504-2519 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-9dfb75282bb05dcaf23dd1221c621bb3ab4f393200d9592c2448d4beff4db3423 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-9dfb75282bb05dcaf23dd1221c621bb3ab4f393200d9592c2448d4beff4db3423 |
container_end_page | 2519 |
container_issue | 5 |
container_start_page | 2504 |
container_title | IEEE transactions on information theory |
container_volume | 62 |
creator | Gadouleau, Maximilien Richard, Adrien Fanchon, Eric |
description | Linear network coding transmits data through networks by letting the intermediate nodes combine the messages they receive and forward the combinations toward their destinations. The solvability problem asks whether the demands of all the destinations can be simultaneously satisfied by using linear network coding. The guessing number approach converts this problem into determining the number of fixed points of coding functions f : A n → A n over a finite alphabet A (usually referred to as Boolean networks if A = {0, 1}) with a given interaction graph that describes which local functions depend on which variables. In this paper, we generalize the so-called reduction of coding functions in order to eliminate variables. We then determine the maximum number of fixed points of a fully reduced coding function, whose interaction graph has a loop on every vertex. Since the reduction preserves the number of fixed points, we then apply these ideas and results to obtain four main results on the linear network coding solvability problem. First, we prove that non-decreasing coding functions cannot solve any more instances than routing already does. Second, we show that the triangle-free undirected graphs are linearly solvable if and only if they are solvable by routing. This is the first classification result for the linear network coding solvability problem. Third, we exhibit a new class of non-linearly solvable graphs. Fourth, we determine large classes of strictly linearly solvable graphs. |
doi_str_mv | 10.1109/TIT.2016.2544344 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2016_2544344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7437473</ieee_id><sourcerecordid>4044828701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-9dfb75282bb05dcaf23dd1221c621bb3ab4f393200d9592c2448d4beff4db3423</originalsourceid><addsrcrecordid>eNo9kM9LwzAcxYMoOKd3wUvBk4fO_Gya4xzODYqK1nNImlQza6NJN91_b-fmTl--j897PB4A5wiOEILiupyXIwxRNsKMUkLpARggxngqMkYPwQBClKeC0vwYnMS46F_KEB6A8smaZdU53yaqNcnU_ViTPHrXdjHxdXLjfWNVm9zb7tuH9_gHFa61KvxrycQb174mz75ZKe0a161PwVGtmmjPdncIXqa35WSWFg9388m4SCuS8S4Vptac4RxrDZmpVI2JMQhjVGUYaU2UpjURBENoBBO4wn19Q7Wta2o0oZgMwdU290018jO4DxXW0isnZ-NCbjSICMohxyvUs5db9jP4r6WNnVz4ZWj7ehLxPONccJj1FNxSVfAxBlvvYxGUm51lv7Pc7Cx3O_eWi63FWWv3OKeEU07IL9dbd_o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786779706</pqid></control><display><type>article</type><title>Reduction and Fixed Points of Boolean Networks and Linear Network Coding Solvability</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Gadouleau, Maximilien ; Richard, Adrien ; Fanchon, Eric</creator><creatorcontrib>Gadouleau, Maximilien ; Richard, Adrien ; Fanchon, Eric</creatorcontrib><description>Linear network coding transmits data through networks by letting the intermediate nodes combine the messages they receive and forward the combinations toward their destinations. The solvability problem asks whether the demands of all the destinations can be simultaneously satisfied by using linear network coding. The guessing number approach converts this problem into determining the number of fixed points of coding functions f : A n → A n over a finite alphabet A (usually referred to as Boolean networks if A = {0, 1}) with a given interaction graph that describes which local functions depend on which variables. In this paper, we generalize the so-called reduction of coding functions in order to eliminate variables. We then determine the maximum number of fixed points of a fully reduced coding function, whose interaction graph has a loop on every vertex. Since the reduction preserves the number of fixed points, we then apply these ideas and results to obtain four main results on the linear network coding solvability problem. First, we prove that non-decreasing coding functions cannot solve any more instances than routing already does. Second, we show that the triangle-free undirected graphs are linearly solvable if and only if they are solvable by routing. This is the first classification result for the linear network coding solvability problem. Third, we exhibit a new class of non-linearly solvable graphs. Fourth, we determine large classes of strictly linearly solvable graphs.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2016.2544344</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automata ; Channel coding ; Computer Science ; Context ; Discrete Mathematics ; Dynamical Systems ; Entropy ; Graph theory ; Information Theory ; Linear codes ; Mathematical problems ; Mathematics ; Network coding ; Routing</subject><ispartof>IEEE transactions on information theory, 2016-05, Vol.62 (5), p.2504-2519</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-9dfb75282bb05dcaf23dd1221c621bb3ab4f393200d9592c2448d4beff4db3423</citedby><cites>FETCH-LOGICAL-c367t-9dfb75282bb05dcaf23dd1221c621bb3ab4f393200d9592c2448d4beff4db3423</cites><orcidid>0000-0001-7409-962X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7437473$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,54774</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01318072$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gadouleau, Maximilien</creatorcontrib><creatorcontrib>Richard, Adrien</creatorcontrib><creatorcontrib>Fanchon, Eric</creatorcontrib><title>Reduction and Fixed Points of Boolean Networks and Linear Network Coding Solvability</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Linear network coding transmits data through networks by letting the intermediate nodes combine the messages they receive and forward the combinations toward their destinations. The solvability problem asks whether the demands of all the destinations can be simultaneously satisfied by using linear network coding. The guessing number approach converts this problem into determining the number of fixed points of coding functions f : A n → A n over a finite alphabet A (usually referred to as Boolean networks if A = {0, 1}) with a given interaction graph that describes which local functions depend on which variables. In this paper, we generalize the so-called reduction of coding functions in order to eliminate variables. We then determine the maximum number of fixed points of a fully reduced coding function, whose interaction graph has a loop on every vertex. Since the reduction preserves the number of fixed points, we then apply these ideas and results to obtain four main results on the linear network coding solvability problem. First, we prove that non-decreasing coding functions cannot solve any more instances than routing already does. Second, we show that the triangle-free undirected graphs are linearly solvable if and only if they are solvable by routing. This is the first classification result for the linear network coding solvability problem. Third, we exhibit a new class of non-linearly solvable graphs. Fourth, we determine large classes of strictly linearly solvable graphs.</description><subject>Automata</subject><subject>Channel coding</subject><subject>Computer Science</subject><subject>Context</subject><subject>Discrete Mathematics</subject><subject>Dynamical Systems</subject><subject>Entropy</subject><subject>Graph theory</subject><subject>Information Theory</subject><subject>Linear codes</subject><subject>Mathematical problems</subject><subject>Mathematics</subject><subject>Network coding</subject><subject>Routing</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAcxYMoOKd3wUvBk4fO_Gya4xzODYqK1nNImlQza6NJN91_b-fmTl--j897PB4A5wiOEILiupyXIwxRNsKMUkLpARggxngqMkYPwQBClKeC0vwYnMS46F_KEB6A8smaZdU53yaqNcnU_ViTPHrXdjHxdXLjfWNVm9zb7tuH9_gHFa61KvxrycQb174mz75ZKe0a161PwVGtmmjPdncIXqa35WSWFg9388m4SCuS8S4Vptac4RxrDZmpVI2JMQhjVGUYaU2UpjURBENoBBO4wn19Q7Wta2o0oZgMwdU290018jO4DxXW0isnZ-NCbjSICMohxyvUs5db9jP4r6WNnVz4ZWj7ehLxPONccJj1FNxSVfAxBlvvYxGUm51lv7Pc7Cx3O_eWi63FWWv3OKeEU07IL9dbd_o</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Gadouleau, Maximilien</creator><creator>Richard, Adrien</creator><creator>Fanchon, Eric</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7409-962X</orcidid></search><sort><creationdate>20160501</creationdate><title>Reduction and Fixed Points of Boolean Networks and Linear Network Coding Solvability</title><author>Gadouleau, Maximilien ; Richard, Adrien ; Fanchon, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-9dfb75282bb05dcaf23dd1221c621bb3ab4f393200d9592c2448d4beff4db3423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automata</topic><topic>Channel coding</topic><topic>Computer Science</topic><topic>Context</topic><topic>Discrete Mathematics</topic><topic>Dynamical Systems</topic><topic>Entropy</topic><topic>Graph theory</topic><topic>Information Theory</topic><topic>Linear codes</topic><topic>Mathematical problems</topic><topic>Mathematics</topic><topic>Network coding</topic><topic>Routing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gadouleau, Maximilien</creatorcontrib><creatorcontrib>Richard, Adrien</creatorcontrib><creatorcontrib>Fanchon, Eric</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gadouleau, Maximilien</au><au>Richard, Adrien</au><au>Fanchon, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction and Fixed Points of Boolean Networks and Linear Network Coding Solvability</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>62</volume><issue>5</issue><spage>2504</spage><epage>2519</epage><pages>2504-2519</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Linear network coding transmits data through networks by letting the intermediate nodes combine the messages they receive and forward the combinations toward their destinations. The solvability problem asks whether the demands of all the destinations can be simultaneously satisfied by using linear network coding. The guessing number approach converts this problem into determining the number of fixed points of coding functions f : A n → A n over a finite alphabet A (usually referred to as Boolean networks if A = {0, 1}) with a given interaction graph that describes which local functions depend on which variables. In this paper, we generalize the so-called reduction of coding functions in order to eliminate variables. We then determine the maximum number of fixed points of a fully reduced coding function, whose interaction graph has a loop on every vertex. Since the reduction preserves the number of fixed points, we then apply these ideas and results to obtain four main results on the linear network coding solvability problem. First, we prove that non-decreasing coding functions cannot solve any more instances than routing already does. Second, we show that the triangle-free undirected graphs are linearly solvable if and only if they are solvable by routing. This is the first classification result for the linear network coding solvability problem. Third, we exhibit a new class of non-linearly solvable graphs. Fourth, we determine large classes of strictly linearly solvable graphs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2016.2544344</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7409-962X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2016-05, Vol.62 (5), p.2504-2519 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2016_2544344 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Automata Channel coding Computer Science Context Discrete Mathematics Dynamical Systems Entropy Graph theory Information Theory Linear codes Mathematical problems Mathematics Network coding Routing |
title | Reduction and Fixed Points of Boolean Networks and Linear Network Coding Solvability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20and%20Fixed%20Points%20of%20Boolean%20Networks%20and%20Linear%20Network%20Coding%20Solvability&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Gadouleau,%20Maximilien&rft.date=2016-05-01&rft.volume=62&rft.issue=5&rft.spage=2504&rft.epage=2519&rft.pages=2504-2519&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2016.2544344&rft_dat=%3Cproquest_cross%3E4044828701%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-9dfb75282bb05dcaf23dd1221c621bb3ab4f393200d9592c2448d4beff4db3423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1786779706&rft_id=info:pmid/&rft_ieee_id=7437473&rfr_iscdi=true |