Loading…

The Quantum Wasserstein Distance of Order 1

We propose a generalization of the Wasserstein distance of order 1 to the quantum states of n qudits. The proposal recovers the Hamming distance for the vectors of the canonical basis, and more generally the classical Wasserstein distance for quantum states diagonal in the canonical basis. The pro...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2021-10, Vol.67 (10), p.6627-6643
Main Authors: De Palma, Giacomo, Marvian, Milad, Trevisan, Dario, Lloyd, Seth
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-26a43ca12479e39bf9ef14058fe238ebcb797a35908d71706b9c1e6662694b543
cites cdi_FETCH-LOGICAL-c446t-26a43ca12479e39bf9ef14058fe238ebcb797a35908d71706b9c1e6662694b543
container_end_page 6643
container_issue 10
container_start_page 6627
container_title IEEE transactions on information theory
container_volume 67
creator De Palma, Giacomo
Marvian, Milad
Trevisan, Dario
Lloyd, Seth
description We propose a generalization of the Wasserstein distance of order 1 to the quantum states of n qudits. The proposal recovers the Hamming distance for the vectors of the canonical basis, and more generally the classical Wasserstein distance for quantum states diagonal in the canonical basis. The proposed distance is invariant with respect to permutations of the qudits and unitary operations acting on one qudit and is additive with respect to the tensor product. Our main result is a continuity bound for the von Neumann entropy with respect to the proposed distance, which significantly strengthens the best continuity bound with respect to the trace distance. We also propose a generalization of the Lipschitz constant to quantum observables. The notion of quantum Lipschitz constant allows us to compute the proposed distance with a semidefinite program. We prove a quantum version of Marton's transportation inequality and a quantum Gaussian concentration inequality for the spectrum of quantum Lipschitz observables. Moreover, we derive bounds on the contraction coefficients of shallow quantum circuits and of the tensor product of one-qudit quantum channels with respect to the proposed distance. We discuss other possible applications in quantum machine learning, quantum Shannon theory, and quantum many-body systems.
doi_str_mv 10.1109/TIT.2021.3076442
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2021_3076442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9420734</ieee_id><sourcerecordid>2572664076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-26a43ca12479e39bf9ef14058fe238ebcb797a35908d71706b9c1e6662694b543</originalsourceid><addsrcrecordid>eNo9kEFLw0AQRhdRsFbvgpeAR0nc2Z3dzR6lVi0UihDxuGzSCabYpO4mB_-9KSmehoH3fcM8xm6BZwDcPharIhNcQCa50YjijM1AKZNarfCczTiHPLWI-SW7inE3rqhAzNhD8UXJ--Dbftgnnz5GCrGnpk2em9j7tqKkq5NN2FJI4Jpd1P470s1pztnHy7JYvKXrzetq8bROK0Tdp0J7lJUHgcaStGVtqQbkKq9JyJzKqjTWeKksz7cGDNelrYC01kJbLBXKObufeg-h-xko9m7XDaEdTzqhjNAaxxdHik9UFboYA9XuEJq9D78OuDsqcaMSd1TiTkrGyN0UaYjoH7couJEo_wBWnVnM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572664076</pqid></control><display><type>article</type><title>The Quantum Wasserstein Distance of Order 1</title><source>IEEE Electronic Library (IEL) Journals</source><creator>De Palma, Giacomo ; Marvian, Milad ; Trevisan, Dario ; Lloyd, Seth</creator><creatorcontrib>De Palma, Giacomo ; Marvian, Milad ; Trevisan, Dario ; Lloyd, Seth</creatorcontrib><description>We propose a generalization of the Wasserstein distance of order 1 to the quantum states of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;n &lt;/tex-math&gt;&lt;/inline-formula&gt; qudits. The proposal recovers the Hamming distance for the vectors of the canonical basis, and more generally the classical Wasserstein distance for quantum states diagonal in the canonical basis. The proposed distance is invariant with respect to permutations of the qudits and unitary operations acting on one qudit and is additive with respect to the tensor product. Our main result is a continuity bound for the von Neumann entropy with respect to the proposed distance, which significantly strengthens the best continuity bound with respect to the trace distance. We also propose a generalization of the Lipschitz constant to quantum observables. The notion of quantum Lipschitz constant allows us to compute the proposed distance with a semidefinite program. We prove a quantum version of Marton's transportation inequality and a quantum Gaussian concentration inequality for the spectrum of quantum Lipschitz observables. Moreover, we derive bounds on the contraction coefficients of shallow quantum circuits and of the tensor product of one-qudit quantum channels with respect to the proposed distance. We discuss other possible applications in quantum machine learning, quantum Shannon theory, and quantum many-body systems.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2021.3076442</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>concentration inequalities ; Continuity ; Entropy ; Hamming distance ; Lipschitz constant ; Machine learning ; Mathematical analysis ; Permutations ; Probability distribution ; Quantum mechanics ; Quantum optimal mass transport ; Quantum state ; qudits ; Tensors ; Training ; von Neumann entropy ; Wasserstein distance</subject><ispartof>IEEE transactions on information theory, 2021-10, Vol.67 (10), p.6627-6643</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-26a43ca12479e39bf9ef14058fe238ebcb797a35908d71706b9c1e6662694b543</citedby><cites>FETCH-LOGICAL-c446t-26a43ca12479e39bf9ef14058fe238ebcb797a35908d71706b9c1e6662694b543</cites><orcidid>0000-0002-5064-8695</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9420734$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>De Palma, Giacomo</creatorcontrib><creatorcontrib>Marvian, Milad</creatorcontrib><creatorcontrib>Trevisan, Dario</creatorcontrib><creatorcontrib>Lloyd, Seth</creatorcontrib><title>The Quantum Wasserstein Distance of Order 1</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We propose a generalization of the Wasserstein distance of order 1 to the quantum states of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;n &lt;/tex-math&gt;&lt;/inline-formula&gt; qudits. The proposal recovers the Hamming distance for the vectors of the canonical basis, and more generally the classical Wasserstein distance for quantum states diagonal in the canonical basis. The proposed distance is invariant with respect to permutations of the qudits and unitary operations acting on one qudit and is additive with respect to the tensor product. Our main result is a continuity bound for the von Neumann entropy with respect to the proposed distance, which significantly strengthens the best continuity bound with respect to the trace distance. We also propose a generalization of the Lipschitz constant to quantum observables. The notion of quantum Lipschitz constant allows us to compute the proposed distance with a semidefinite program. We prove a quantum version of Marton's transportation inequality and a quantum Gaussian concentration inequality for the spectrum of quantum Lipschitz observables. Moreover, we derive bounds on the contraction coefficients of shallow quantum circuits and of the tensor product of one-qudit quantum channels with respect to the proposed distance. We discuss other possible applications in quantum machine learning, quantum Shannon theory, and quantum many-body systems.</description><subject>concentration inequalities</subject><subject>Continuity</subject><subject>Entropy</subject><subject>Hamming distance</subject><subject>Lipschitz constant</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Permutations</subject><subject>Probability distribution</subject><subject>Quantum mechanics</subject><subject>Quantum optimal mass transport</subject><subject>Quantum state</subject><subject>qudits</subject><subject>Tensors</subject><subject>Training</subject><subject>von Neumann entropy</subject><subject>Wasserstein distance</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLw0AQRhdRsFbvgpeAR0nc2Z3dzR6lVi0UihDxuGzSCabYpO4mB_-9KSmehoH3fcM8xm6BZwDcPharIhNcQCa50YjijM1AKZNarfCczTiHPLWI-SW7inE3rqhAzNhD8UXJ--Dbftgnnz5GCrGnpk2em9j7tqKkq5NN2FJI4Jpd1P470s1pztnHy7JYvKXrzetq8bROK0Tdp0J7lJUHgcaStGVtqQbkKq9JyJzKqjTWeKksz7cGDNelrYC01kJbLBXKObufeg-h-xko9m7XDaEdTzqhjNAaxxdHik9UFboYA9XuEJq9D78OuDsqcaMSd1TiTkrGyN0UaYjoH7couJEo_wBWnVnM</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>De Palma, Giacomo</creator><creator>Marvian, Milad</creator><creator>Trevisan, Dario</creator><creator>Lloyd, Seth</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5064-8695</orcidid></search><sort><creationdate>20211001</creationdate><title>The Quantum Wasserstein Distance of Order 1</title><author>De Palma, Giacomo ; Marvian, Milad ; Trevisan, Dario ; Lloyd, Seth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-26a43ca12479e39bf9ef14058fe238ebcb797a35908d71706b9c1e6662694b543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>concentration inequalities</topic><topic>Continuity</topic><topic>Entropy</topic><topic>Hamming distance</topic><topic>Lipschitz constant</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Permutations</topic><topic>Probability distribution</topic><topic>Quantum mechanics</topic><topic>Quantum optimal mass transport</topic><topic>Quantum state</topic><topic>qudits</topic><topic>Tensors</topic><topic>Training</topic><topic>von Neumann entropy</topic><topic>Wasserstein distance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Palma, Giacomo</creatorcontrib><creatorcontrib>Marvian, Milad</creatorcontrib><creatorcontrib>Trevisan, Dario</creatorcontrib><creatorcontrib>Lloyd, Seth</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Palma, Giacomo</au><au>Marvian, Milad</au><au>Trevisan, Dario</au><au>Lloyd, Seth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Quantum Wasserstein Distance of Order 1</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>67</volume><issue>10</issue><spage>6627</spage><epage>6643</epage><pages>6627-6643</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We propose a generalization of the Wasserstein distance of order 1 to the quantum states of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;n &lt;/tex-math&gt;&lt;/inline-formula&gt; qudits. The proposal recovers the Hamming distance for the vectors of the canonical basis, and more generally the classical Wasserstein distance for quantum states diagonal in the canonical basis. The proposed distance is invariant with respect to permutations of the qudits and unitary operations acting on one qudit and is additive with respect to the tensor product. Our main result is a continuity bound for the von Neumann entropy with respect to the proposed distance, which significantly strengthens the best continuity bound with respect to the trace distance. We also propose a generalization of the Lipschitz constant to quantum observables. The notion of quantum Lipschitz constant allows us to compute the proposed distance with a semidefinite program. We prove a quantum version of Marton's transportation inequality and a quantum Gaussian concentration inequality for the spectrum of quantum Lipschitz observables. Moreover, we derive bounds on the contraction coefficients of shallow quantum circuits and of the tensor product of one-qudit quantum channels with respect to the proposed distance. We discuss other possible applications in quantum machine learning, quantum Shannon theory, and quantum many-body systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2021.3076442</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5064-8695</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2021-10, Vol.67 (10), p.6627-6643
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2021_3076442
source IEEE Electronic Library (IEL) Journals
subjects concentration inequalities
Continuity
Entropy
Hamming distance
Lipschitz constant
Machine learning
Mathematical analysis
Permutations
Probability distribution
Quantum mechanics
Quantum optimal mass transport
Quantum state
qudits
Tensors
Training
von Neumann entropy
Wasserstein distance
title The Quantum Wasserstein Distance of Order 1
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A31%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Quantum%20Wasserstein%20Distance%20of%20Order%201&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=De%20Palma,%20Giacomo&rft.date=2021-10-01&rft.volume=67&rft.issue=10&rft.spage=6627&rft.epage=6643&rft.pages=6627-6643&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2021.3076442&rft_dat=%3Cproquest_cross%3E2572664076%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-26a43ca12479e39bf9ef14058fe238ebcb797a35908d71706b9c1e6662694b543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2572664076&rft_id=info:pmid/&rft_ieee_id=9420734&rfr_iscdi=true