Loading…
What is the Fourier Transform of a Spatial Point Process?
This paper determines how to define a discretely implemented Fourier transform when analysing an observed spatial point process. To develop this transform we answer four questions; first what is the natural definition of a Fourier transform, and what are its spectral moments, second we calculate fou...
Saved in:
Published in: | IEEE transactions on information theory 2023-08, Vol.69 (8), p.1-1 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-d93f4ae7ea8aa31826f54768abc915d64f31a1a642362f4014bcd510d21877cc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-d93f4ae7ea8aa31826f54768abc915d64f31a1a642362f4014bcd510d21877cc3 |
container_end_page | 1 |
container_issue | 8 |
container_start_page | 1 |
container_title | IEEE transactions on information theory |
container_volume | 69 |
creator | Rajala, Tuomas A. Olhede, Sofia C. Grainger, Jake P. Murrell, David J. |
description | This paper determines how to define a discretely implemented Fourier transform when analysing an observed spatial point process. To develop this transform we answer four questions; first what is the natural definition of a Fourier transform, and what are its spectral moments, second we calculate fourth order moments of the Fourier transform using Campbell's theorem. Third we determine how to implement tapering, an important component for spectral analysis of other stochastic processes. Fourth we answer the question of how to produce an isotropic representation of the Fourier transform of the process. This determines the basic spectral properties of an observed spatial point process. |
doi_str_mv | 10.1109/TIT.2023.3269514 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2023_3269514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10107467</ieee_id><sourcerecordid>2837133725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-d93f4ae7ea8aa31826f54768abc915d64f31a1a642362f4014bcd510d21877cc3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3Dx4Cnrdm8r0nkWK1ULDgiseQZhO6pW1qsj34703ZHjwNA8878_IgdA9kAkDqp2beTCihbMKorAXwCzQCIVRVS8Ev0YgQ0FXNub5GNzlvysoF0BGqv9e2x13G_drjWTymzifcJLvPIaYdjgFb_HmwfWe3eBm7fY-XKTqf8_Mtugp2m_3deY7R1-y1mb5Xi4-3-fRlUTnGeF-1NQvceuWttpaBpjIIrqS2K1eDaCUPDCxYySmTNPDSa-VaAaSloJVyjo3R43D3kOLP0efebErNfXlpqGYKGFNUFIoMlEsx5-SDOaRuZ9OvAWJOgkwRZE6CzFlQiTwMkc57_w8HorhU7A__tl95</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837133725</pqid></control><display><type>article</type><title>What is the Fourier Transform of a Spatial Point Process?</title><source>IEEE Xplore (Online service)</source><creator>Rajala, Tuomas A. ; Olhede, Sofia C. ; Grainger, Jake P. ; Murrell, David J.</creator><creatorcontrib>Rajala, Tuomas A. ; Olhede, Sofia C. ; Grainger, Jake P. ; Murrell, David J.</creatorcontrib><description>This paper determines how to define a discretely implemented Fourier transform when analysing an observed spatial point process. To develop this transform we answer four questions; first what is the natural definition of a Fourier transform, and what are its spectral moments, second we calculate fourth order moments of the Fourier transform using Campbell's theorem. Third we determine how to implement tapering, an important component for spectral analysis of other stochastic processes. Fourth we answer the question of how to produce an isotropic representation of the Fourier transform of the process. This determines the basic spectral properties of an observed spatial point process.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2023.3269514</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Debiased periodogram ; Discrete Fourier transforms ; Fourier transforms ; Questions ; Smoothing methods ; Spatial point processes ; Spectral analysis ; Spectral density function ; Spectrum analysis ; Stochastic processes ; Tapering ; Time series analysis</subject><ispartof>IEEE transactions on information theory, 2023-08, Vol.69 (8), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-d93f4ae7ea8aa31826f54768abc915d64f31a1a642362f4014bcd510d21877cc3</citedby><cites>FETCH-LOGICAL-c334t-d93f4ae7ea8aa31826f54768abc915d64f31a1a642362f4014bcd510d21877cc3</cites><orcidid>0000-0002-1343-8058 ; 0000-0002-8808-4821 ; 0000-0003-0061-227X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10107467$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rajala, Tuomas A.</creatorcontrib><creatorcontrib>Olhede, Sofia C.</creatorcontrib><creatorcontrib>Grainger, Jake P.</creatorcontrib><creatorcontrib>Murrell, David J.</creatorcontrib><title>What is the Fourier Transform of a Spatial Point Process?</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>This paper determines how to define a discretely implemented Fourier transform when analysing an observed spatial point process. To develop this transform we answer four questions; first what is the natural definition of a Fourier transform, and what are its spectral moments, second we calculate fourth order moments of the Fourier transform using Campbell's theorem. Third we determine how to implement tapering, an important component for spectral analysis of other stochastic processes. Fourth we answer the question of how to produce an isotropic representation of the Fourier transform of the process. This determines the basic spectral properties of an observed spatial point process.</description><subject>Debiased periodogram</subject><subject>Discrete Fourier transforms</subject><subject>Fourier transforms</subject><subject>Questions</subject><subject>Smoothing methods</subject><subject>Spatial point processes</subject><subject>Spectral analysis</subject><subject>Spectral density function</subject><subject>Spectrum analysis</subject><subject>Stochastic processes</subject><subject>Tapering</subject><subject>Time series analysis</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkE1LAzEQhoMoWKt3Dx4Cnrdm8r0nkWK1ULDgiseQZhO6pW1qsj34703ZHjwNA8878_IgdA9kAkDqp2beTCihbMKorAXwCzQCIVRVS8Ev0YgQ0FXNub5GNzlvysoF0BGqv9e2x13G_drjWTymzifcJLvPIaYdjgFb_HmwfWe3eBm7fY-XKTqf8_Mtugp2m_3deY7R1-y1mb5Xi4-3-fRlUTnGeF-1NQvceuWttpaBpjIIrqS2K1eDaCUPDCxYySmTNPDSa-VaAaSloJVyjo3R43D3kOLP0efebErNfXlpqGYKGFNUFIoMlEsx5-SDOaRuZ9OvAWJOgkwRZE6CzFlQiTwMkc57_w8HorhU7A__tl95</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Rajala, Tuomas A.</creator><creator>Olhede, Sofia C.</creator><creator>Grainger, Jake P.</creator><creator>Murrell, David J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1343-8058</orcidid><orcidid>https://orcid.org/0000-0002-8808-4821</orcidid><orcidid>https://orcid.org/0000-0003-0061-227X</orcidid></search><sort><creationdate>20230801</creationdate><title>What is the Fourier Transform of a Spatial Point Process?</title><author>Rajala, Tuomas A. ; Olhede, Sofia C. ; Grainger, Jake P. ; Murrell, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-d93f4ae7ea8aa31826f54768abc915d64f31a1a642362f4014bcd510d21877cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Debiased periodogram</topic><topic>Discrete Fourier transforms</topic><topic>Fourier transforms</topic><topic>Questions</topic><topic>Smoothing methods</topic><topic>Spatial point processes</topic><topic>Spectral analysis</topic><topic>Spectral density function</topic><topic>Spectrum analysis</topic><topic>Stochastic processes</topic><topic>Tapering</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajala, Tuomas A.</creatorcontrib><creatorcontrib>Olhede, Sofia C.</creatorcontrib><creatorcontrib>Grainger, Jake P.</creatorcontrib><creatorcontrib>Murrell, David J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajala, Tuomas A.</au><au>Olhede, Sofia C.</au><au>Grainger, Jake P.</au><au>Murrell, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What is the Fourier Transform of a Spatial Point Process?</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>69</volume><issue>8</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>This paper determines how to define a discretely implemented Fourier transform when analysing an observed spatial point process. To develop this transform we answer four questions; first what is the natural definition of a Fourier transform, and what are its spectral moments, second we calculate fourth order moments of the Fourier transform using Campbell's theorem. Third we determine how to implement tapering, an important component for spectral analysis of other stochastic processes. Fourth we answer the question of how to produce an isotropic representation of the Fourier transform of the process. This determines the basic spectral properties of an observed spatial point process.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2023.3269514</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1343-8058</orcidid><orcidid>https://orcid.org/0000-0002-8808-4821</orcidid><orcidid>https://orcid.org/0000-0003-0061-227X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2023-08, Vol.69 (8), p.1-1 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2023_3269514 |
source | IEEE Xplore (Online service) |
subjects | Debiased periodogram Discrete Fourier transforms Fourier transforms Questions Smoothing methods Spatial point processes Spectral analysis Spectral density function Spectrum analysis Stochastic processes Tapering Time series analysis |
title | What is the Fourier Transform of a Spatial Point Process? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20is%20the%20Fourier%20Transform%20of%20a%20Spatial%20Point%20Process?&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Rajala,%20Tuomas%20A.&rft.date=2023-08-01&rft.volume=69&rft.issue=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2023.3269514&rft_dat=%3Cproquest_cross%3E2837133725%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-d93f4ae7ea8aa31826f54768abc915d64f31a1a642362f4014bcd510d21877cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2837133725&rft_id=info:pmid/&rft_ieee_id=10107467&rfr_iscdi=true |