Loading…

What is the Fourier Transform of a Spatial Point Process?

This paper determines how to define a discretely implemented Fourier transform when analysing an observed spatial point process. To develop this transform we answer four questions; first what is the natural definition of a Fourier transform, and what are its spectral moments, second we calculate fou...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2023-08, Vol.69 (8), p.1-1
Main Authors: Rajala, Tuomas A., Olhede, Sofia C., Grainger, Jake P., Murrell, David J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-d93f4ae7ea8aa31826f54768abc915d64f31a1a642362f4014bcd510d21877cc3
cites cdi_FETCH-LOGICAL-c334t-d93f4ae7ea8aa31826f54768abc915d64f31a1a642362f4014bcd510d21877cc3
container_end_page 1
container_issue 8
container_start_page 1
container_title IEEE transactions on information theory
container_volume 69
creator Rajala, Tuomas A.
Olhede, Sofia C.
Grainger, Jake P.
Murrell, David J.
description This paper determines how to define a discretely implemented Fourier transform when analysing an observed spatial point process. To develop this transform we answer four questions; first what is the natural definition of a Fourier transform, and what are its spectral moments, second we calculate fourth order moments of the Fourier transform using Campbell's theorem. Third we determine how to implement tapering, an important component for spectral analysis of other stochastic processes. Fourth we answer the question of how to produce an isotropic representation of the Fourier transform of the process. This determines the basic spectral properties of an observed spatial point process.
doi_str_mv 10.1109/TIT.2023.3269514
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2023_3269514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10107467</ieee_id><sourcerecordid>2837133725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-d93f4ae7ea8aa31826f54768abc915d64f31a1a642362f4014bcd510d21877cc3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3Dx4Cnrdm8r0nkWK1ULDgiseQZhO6pW1qsj34703ZHjwNA8878_IgdA9kAkDqp2beTCihbMKorAXwCzQCIVRVS8Ev0YgQ0FXNub5GNzlvysoF0BGqv9e2x13G_drjWTymzifcJLvPIaYdjgFb_HmwfWe3eBm7fY-XKTqf8_Mtugp2m_3deY7R1-y1mb5Xi4-3-fRlUTnGeF-1NQvceuWttpaBpjIIrqS2K1eDaCUPDCxYySmTNPDSa-VaAaSloJVyjo3R43D3kOLP0efebErNfXlpqGYKGFNUFIoMlEsx5-SDOaRuZ9OvAWJOgkwRZE6CzFlQiTwMkc57_w8HorhU7A__tl95</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837133725</pqid></control><display><type>article</type><title>What is the Fourier Transform of a Spatial Point Process?</title><source>IEEE Xplore (Online service)</source><creator>Rajala, Tuomas A. ; Olhede, Sofia C. ; Grainger, Jake P. ; Murrell, David J.</creator><creatorcontrib>Rajala, Tuomas A. ; Olhede, Sofia C. ; Grainger, Jake P. ; Murrell, David J.</creatorcontrib><description>This paper determines how to define a discretely implemented Fourier transform when analysing an observed spatial point process. To develop this transform we answer four questions; first what is the natural definition of a Fourier transform, and what are its spectral moments, second we calculate fourth order moments of the Fourier transform using Campbell's theorem. Third we determine how to implement tapering, an important component for spectral analysis of other stochastic processes. Fourth we answer the question of how to produce an isotropic representation of the Fourier transform of the process. This determines the basic spectral properties of an observed spatial point process.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2023.3269514</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Debiased periodogram ; Discrete Fourier transforms ; Fourier transforms ; Questions ; Smoothing methods ; Spatial point processes ; Spectral analysis ; Spectral density function ; Spectrum analysis ; Stochastic processes ; Tapering ; Time series analysis</subject><ispartof>IEEE transactions on information theory, 2023-08, Vol.69 (8), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-d93f4ae7ea8aa31826f54768abc915d64f31a1a642362f4014bcd510d21877cc3</citedby><cites>FETCH-LOGICAL-c334t-d93f4ae7ea8aa31826f54768abc915d64f31a1a642362f4014bcd510d21877cc3</cites><orcidid>0000-0002-1343-8058 ; 0000-0002-8808-4821 ; 0000-0003-0061-227X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10107467$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rajala, Tuomas A.</creatorcontrib><creatorcontrib>Olhede, Sofia C.</creatorcontrib><creatorcontrib>Grainger, Jake P.</creatorcontrib><creatorcontrib>Murrell, David J.</creatorcontrib><title>What is the Fourier Transform of a Spatial Point Process?</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>This paper determines how to define a discretely implemented Fourier transform when analysing an observed spatial point process. To develop this transform we answer four questions; first what is the natural definition of a Fourier transform, and what are its spectral moments, second we calculate fourth order moments of the Fourier transform using Campbell's theorem. Third we determine how to implement tapering, an important component for spectral analysis of other stochastic processes. Fourth we answer the question of how to produce an isotropic representation of the Fourier transform of the process. This determines the basic spectral properties of an observed spatial point process.</description><subject>Debiased periodogram</subject><subject>Discrete Fourier transforms</subject><subject>Fourier transforms</subject><subject>Questions</subject><subject>Smoothing methods</subject><subject>Spatial point processes</subject><subject>Spectral analysis</subject><subject>Spectral density function</subject><subject>Spectrum analysis</subject><subject>Stochastic processes</subject><subject>Tapering</subject><subject>Time series analysis</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkE1LAzEQhoMoWKt3Dx4Cnrdm8r0nkWK1ULDgiseQZhO6pW1qsj34703ZHjwNA8878_IgdA9kAkDqp2beTCihbMKorAXwCzQCIVRVS8Ev0YgQ0FXNub5GNzlvysoF0BGqv9e2x13G_drjWTymzifcJLvPIaYdjgFb_HmwfWe3eBm7fY-XKTqf8_Mtugp2m_3deY7R1-y1mb5Xi4-3-fRlUTnGeF-1NQvceuWttpaBpjIIrqS2K1eDaCUPDCxYySmTNPDSa-VaAaSloJVyjo3R43D3kOLP0efebErNfXlpqGYKGFNUFIoMlEsx5-SDOaRuZ9OvAWJOgkwRZE6CzFlQiTwMkc57_w8HorhU7A__tl95</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Rajala, Tuomas A.</creator><creator>Olhede, Sofia C.</creator><creator>Grainger, Jake P.</creator><creator>Murrell, David J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1343-8058</orcidid><orcidid>https://orcid.org/0000-0002-8808-4821</orcidid><orcidid>https://orcid.org/0000-0003-0061-227X</orcidid></search><sort><creationdate>20230801</creationdate><title>What is the Fourier Transform of a Spatial Point Process?</title><author>Rajala, Tuomas A. ; Olhede, Sofia C. ; Grainger, Jake P. ; Murrell, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-d93f4ae7ea8aa31826f54768abc915d64f31a1a642362f4014bcd510d21877cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Debiased periodogram</topic><topic>Discrete Fourier transforms</topic><topic>Fourier transforms</topic><topic>Questions</topic><topic>Smoothing methods</topic><topic>Spatial point processes</topic><topic>Spectral analysis</topic><topic>Spectral density function</topic><topic>Spectrum analysis</topic><topic>Stochastic processes</topic><topic>Tapering</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajala, Tuomas A.</creatorcontrib><creatorcontrib>Olhede, Sofia C.</creatorcontrib><creatorcontrib>Grainger, Jake P.</creatorcontrib><creatorcontrib>Murrell, David J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajala, Tuomas A.</au><au>Olhede, Sofia C.</au><au>Grainger, Jake P.</au><au>Murrell, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What is the Fourier Transform of a Spatial Point Process?</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>69</volume><issue>8</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>This paper determines how to define a discretely implemented Fourier transform when analysing an observed spatial point process. To develop this transform we answer four questions; first what is the natural definition of a Fourier transform, and what are its spectral moments, second we calculate fourth order moments of the Fourier transform using Campbell's theorem. Third we determine how to implement tapering, an important component for spectral analysis of other stochastic processes. Fourth we answer the question of how to produce an isotropic representation of the Fourier transform of the process. This determines the basic spectral properties of an observed spatial point process.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2023.3269514</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1343-8058</orcidid><orcidid>https://orcid.org/0000-0002-8808-4821</orcidid><orcidid>https://orcid.org/0000-0003-0061-227X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2023-08, Vol.69 (8), p.1-1
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2023_3269514
source IEEE Xplore (Online service)
subjects Debiased periodogram
Discrete Fourier transforms
Fourier transforms
Questions
Smoothing methods
Spatial point processes
Spectral analysis
Spectral density function
Spectrum analysis
Stochastic processes
Tapering
Time series analysis
title What is the Fourier Transform of a Spatial Point Process?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20is%20the%20Fourier%20Transform%20of%20a%20Spatial%20Point%20Process?&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Rajala,%20Tuomas%20A.&rft.date=2023-08-01&rft.volume=69&rft.issue=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2023.3269514&rft_dat=%3Cproquest_cross%3E2837133725%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-d93f4ae7ea8aa31826f54768abc915d64f31a1a642362f4014bcd510d21877cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2837133725&rft_id=info:pmid/&rft_ieee_id=10107467&rfr_iscdi=true