Loading…

Challenges in Perception and Decision Making for Intelligent Automotive Vehicles: A Case Study

This paper overviews challenges in perception and decision making for intelligent, or highly automated, automotive vehicles. We illustrate our development of a complete perception and decision making system which addresses various challenges and propose an action planning method for highly automated...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent vehicles 2016-03, Vol.1 (1), p.20-32
Main Authors: Okumura, Bunyo, James, Michael R., Kanzawa, Yusuke, Derry, Matthew, Sakai, Katsuhiro, Nishi, Tomoki, Prokhorov, Danil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c263t-4ab68509d4f405dff7e4bb22e3f9f43bc93498d85acb926defe9d62091412c443
cites cdi_FETCH-LOGICAL-c263t-4ab68509d4f405dff7e4bb22e3f9f43bc93498d85acb926defe9d62091412c443
container_end_page 32
container_issue 1
container_start_page 20
container_title IEEE transactions on intelligent vehicles
container_volume 1
creator Okumura, Bunyo
James, Michael R.
Kanzawa, Yusuke
Derry, Matthew
Sakai, Katsuhiro
Nishi, Tomoki
Prokhorov, Danil
description This paper overviews challenges in perception and decision making for intelligent, or highly automated, automotive vehicles. We illustrate our development of a complete perception and decision making system which addresses various challenges and propose an action planning method for highly automated vehicles which can merge into a roundabout. We use learning from demonstration to construct a classifier for high-level decision making, and develop a novel set of formulations that is suited to this challenging situation: multiple agents in a highly dynamic environment with interdependencies between agents, partial observability, and a limited amount of training data. Having limited amount of labeled training data is highly constraining, but a very real issue in real-world applications. We believe that our formulations are also well suited to other automated driving scenarios.
doi_str_mv 10.1109/TIV.2016.2551545
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIV_2016_2551545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7448943</ieee_id><sourcerecordid>10_1109_TIV_2016_2551545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-4ab68509d4f405dff7e4bb22e3f9f43bc93498d85acb926defe9d62091412c443</originalsourceid><addsrcrecordid>eNo9kE1LAzEYhIMoWGrvgpf8ga353Cbeyvq1UFGw9uiSzb5po9ts2aRC_70trZ5mBmbm8CB0TcmYUqJv5-VizAjNx0xKKoU8QwPGJzpTmojzP6-kukSjGL8I2VcVU0QP0GexMm0LYQkR-4DfoLewSb4L2IQG34P18RBezLcPS-y6HpchQdv6JYSEp9vUrbvkfwAvYOVtC_EOT3FhIuD3tG12V-jCmTbC6KRD9PH4MC-es9nrU1lMZ5llOU-ZMHWuJNGNcILIxrkJiLpmDLjTTvDaai60apQ0ttYsb8CBbnJGNBWUWSH4EJHjr-27GHtw1ab3a9PvKkqqA6Jqj6g6IKpOiPaTm-PEA8B_fSKE0oLzXzXJYsY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Challenges in Perception and Decision Making for Intelligent Automotive Vehicles: A Case Study</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Okumura, Bunyo ; James, Michael R. ; Kanzawa, Yusuke ; Derry, Matthew ; Sakai, Katsuhiro ; Nishi, Tomoki ; Prokhorov, Danil</creator><creatorcontrib>Okumura, Bunyo ; James, Michael R. ; Kanzawa, Yusuke ; Derry, Matthew ; Sakai, Katsuhiro ; Nishi, Tomoki ; Prokhorov, Danil</creatorcontrib><description>This paper overviews challenges in perception and decision making for intelligent, or highly automated, automotive vehicles. We illustrate our development of a complete perception and decision making system which addresses various challenges and propose an action planning method for highly automated vehicles which can merge into a roundabout. We use learning from demonstration to construct a classifier for high-level decision making, and develop a novel set of formulations that is suited to this challenging situation: multiple agents in a highly dynamic environment with interdependencies between agents, partial observability, and a limited amount of training data. Having limited amount of labeled training data is highly constraining, but a very real issue in real-world applications. We believe that our formulations are also well suited to other automated driving scenarios.</description><identifier>ISSN: 2379-8858</identifier><identifier>EISSN: 2379-8904</identifier><identifier>DOI: 10.1109/TIV.2016.2551545</identifier><identifier>CODEN: ITIVBL</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automata ; Autonomous driving ; classifier ; Decision making ; finite state machine ; high-definition lidar ; high-fidelity map ; Laser radar ; learning from demonstration ; Machine learning ; robot ; Robot sensing systems ; roundabout ; state representation ; Support vector machine classification</subject><ispartof>IEEE transactions on intelligent vehicles, 2016-03, Vol.1 (1), p.20-32</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-4ab68509d4f405dff7e4bb22e3f9f43bc93498d85acb926defe9d62091412c443</citedby><cites>FETCH-LOGICAL-c263t-4ab68509d4f405dff7e4bb22e3f9f43bc93498d85acb926defe9d62091412c443</cites><orcidid>0000-0002-6208-4233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7448943$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Okumura, Bunyo</creatorcontrib><creatorcontrib>James, Michael R.</creatorcontrib><creatorcontrib>Kanzawa, Yusuke</creatorcontrib><creatorcontrib>Derry, Matthew</creatorcontrib><creatorcontrib>Sakai, Katsuhiro</creatorcontrib><creatorcontrib>Nishi, Tomoki</creatorcontrib><creatorcontrib>Prokhorov, Danil</creatorcontrib><title>Challenges in Perception and Decision Making for Intelligent Automotive Vehicles: A Case Study</title><title>IEEE transactions on intelligent vehicles</title><addtitle>TIV</addtitle><description>This paper overviews challenges in perception and decision making for intelligent, or highly automated, automotive vehicles. We illustrate our development of a complete perception and decision making system which addresses various challenges and propose an action planning method for highly automated vehicles which can merge into a roundabout. We use learning from demonstration to construct a classifier for high-level decision making, and develop a novel set of formulations that is suited to this challenging situation: multiple agents in a highly dynamic environment with interdependencies between agents, partial observability, and a limited amount of training data. Having limited amount of labeled training data is highly constraining, but a very real issue in real-world applications. We believe that our formulations are also well suited to other automated driving scenarios.</description><subject>Automata</subject><subject>Autonomous driving</subject><subject>classifier</subject><subject>Decision making</subject><subject>finite state machine</subject><subject>high-definition lidar</subject><subject>high-fidelity map</subject><subject>Laser radar</subject><subject>learning from demonstration</subject><subject>Machine learning</subject><subject>robot</subject><subject>Robot sensing systems</subject><subject>roundabout</subject><subject>state representation</subject><subject>Support vector machine classification</subject><issn>2379-8858</issn><issn>2379-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEYhIMoWGrvgpf8ga353Cbeyvq1UFGw9uiSzb5po9ts2aRC_70trZ5mBmbm8CB0TcmYUqJv5-VizAjNx0xKKoU8QwPGJzpTmojzP6-kukSjGL8I2VcVU0QP0GexMm0LYQkR-4DfoLewSb4L2IQG34P18RBezLcPS-y6HpchQdv6JYSEp9vUrbvkfwAvYOVtC_EOT3FhIuD3tG12V-jCmTbC6KRD9PH4MC-es9nrU1lMZ5llOU-ZMHWuJNGNcILIxrkJiLpmDLjTTvDaai60apQ0ttYsb8CBbnJGNBWUWSH4EJHjr-27GHtw1ab3a9PvKkqqA6Jqj6g6IKpOiPaTm-PEA8B_fSKE0oLzXzXJYsY</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Okumura, Bunyo</creator><creator>James, Michael R.</creator><creator>Kanzawa, Yusuke</creator><creator>Derry, Matthew</creator><creator>Sakai, Katsuhiro</creator><creator>Nishi, Tomoki</creator><creator>Prokhorov, Danil</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6208-4233</orcidid></search><sort><creationdate>20160301</creationdate><title>Challenges in Perception and Decision Making for Intelligent Automotive Vehicles: A Case Study</title><author>Okumura, Bunyo ; James, Michael R. ; Kanzawa, Yusuke ; Derry, Matthew ; Sakai, Katsuhiro ; Nishi, Tomoki ; Prokhorov, Danil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-4ab68509d4f405dff7e4bb22e3f9f43bc93498d85acb926defe9d62091412c443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automata</topic><topic>Autonomous driving</topic><topic>classifier</topic><topic>Decision making</topic><topic>finite state machine</topic><topic>high-definition lidar</topic><topic>high-fidelity map</topic><topic>Laser radar</topic><topic>learning from demonstration</topic><topic>Machine learning</topic><topic>robot</topic><topic>Robot sensing systems</topic><topic>roundabout</topic><topic>state representation</topic><topic>Support vector machine classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okumura, Bunyo</creatorcontrib><creatorcontrib>James, Michael R.</creatorcontrib><creatorcontrib>Kanzawa, Yusuke</creatorcontrib><creatorcontrib>Derry, Matthew</creatorcontrib><creatorcontrib>Sakai, Katsuhiro</creatorcontrib><creatorcontrib>Nishi, Tomoki</creatorcontrib><creatorcontrib>Prokhorov, Danil</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okumura, Bunyo</au><au>James, Michael R.</au><au>Kanzawa, Yusuke</au><au>Derry, Matthew</au><au>Sakai, Katsuhiro</au><au>Nishi, Tomoki</au><au>Prokhorov, Danil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Challenges in Perception and Decision Making for Intelligent Automotive Vehicles: A Case Study</atitle><jtitle>IEEE transactions on intelligent vehicles</jtitle><stitle>TIV</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>1</volume><issue>1</issue><spage>20</spage><epage>32</epage><pages>20-32</pages><issn>2379-8858</issn><eissn>2379-8904</eissn><coden>ITIVBL</coden><abstract>This paper overviews challenges in perception and decision making for intelligent, or highly automated, automotive vehicles. We illustrate our development of a complete perception and decision making system which addresses various challenges and propose an action planning method for highly automated vehicles which can merge into a roundabout. We use learning from demonstration to construct a classifier for high-level decision making, and develop a novel set of formulations that is suited to this challenging situation: multiple agents in a highly dynamic environment with interdependencies between agents, partial observability, and a limited amount of training data. Having limited amount of labeled training data is highly constraining, but a very real issue in real-world applications. We believe that our formulations are also well suited to other automated driving scenarios.</abstract><pub>IEEE</pub><doi>10.1109/TIV.2016.2551545</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6208-4233</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2379-8858
ispartof IEEE transactions on intelligent vehicles, 2016-03, Vol.1 (1), p.20-32
issn 2379-8858
2379-8904
language eng
recordid cdi_crossref_primary_10_1109_TIV_2016_2551545
source IEEE Electronic Library (IEL) Journals
subjects Automata
Autonomous driving
classifier
Decision making
finite state machine
high-definition lidar
high-fidelity map
Laser radar
learning from demonstration
Machine learning
robot
Robot sensing systems
roundabout
state representation
Support vector machine classification
title Challenges in Perception and Decision Making for Intelligent Automotive Vehicles: A Case Study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A42%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Challenges%20in%20Perception%20and%20Decision%20Making%20for%20Intelligent%20Automotive%20Vehicles:%20A%20Case%20Study&rft.jtitle=IEEE%20transactions%20on%20intelligent%20vehicles&rft.au=Okumura,%20Bunyo&rft.date=2016-03-01&rft.volume=1&rft.issue=1&rft.spage=20&rft.epage=32&rft.pages=20-32&rft.issn=2379-8858&rft.eissn=2379-8904&rft.coden=ITIVBL&rft_id=info:doi/10.1109/TIV.2016.2551545&rft_dat=%3Ccrossref_ieee_%3E10_1109_TIV_2016_2551545%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-4ab68509d4f405dff7e4bb22e3f9f43bc93498d85acb926defe9d62091412c443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7448943&rfr_iscdi=true