Loading…
Challenges in Perception and Decision Making for Intelligent Automotive Vehicles: A Case Study
This paper overviews challenges in perception and decision making for intelligent, or highly automated, automotive vehicles. We illustrate our development of a complete perception and decision making system which addresses various challenges and propose an action planning method for highly automated...
Saved in:
Published in: | IEEE transactions on intelligent vehicles 2016-03, Vol.1 (1), p.20-32 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c263t-4ab68509d4f405dff7e4bb22e3f9f43bc93498d85acb926defe9d62091412c443 |
---|---|
cites | cdi_FETCH-LOGICAL-c263t-4ab68509d4f405dff7e4bb22e3f9f43bc93498d85acb926defe9d62091412c443 |
container_end_page | 32 |
container_issue | 1 |
container_start_page | 20 |
container_title | IEEE transactions on intelligent vehicles |
container_volume | 1 |
creator | Okumura, Bunyo James, Michael R. Kanzawa, Yusuke Derry, Matthew Sakai, Katsuhiro Nishi, Tomoki Prokhorov, Danil |
description | This paper overviews challenges in perception and decision making for intelligent, or highly automated, automotive vehicles. We illustrate our development of a complete perception and decision making system which addresses various challenges and propose an action planning method for highly automated vehicles which can merge into a roundabout. We use learning from demonstration to construct a classifier for high-level decision making, and develop a novel set of formulations that is suited to this challenging situation: multiple agents in a highly dynamic environment with interdependencies between agents, partial observability, and a limited amount of training data. Having limited amount of labeled training data is highly constraining, but a very real issue in real-world applications. We believe that our formulations are also well suited to other automated driving scenarios. |
doi_str_mv | 10.1109/TIV.2016.2551545 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIV_2016_2551545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7448943</ieee_id><sourcerecordid>10_1109_TIV_2016_2551545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-4ab68509d4f405dff7e4bb22e3f9f43bc93498d85acb926defe9d62091412c443</originalsourceid><addsrcrecordid>eNo9kE1LAzEYhIMoWGrvgpf8ga353Cbeyvq1UFGw9uiSzb5po9ts2aRC_70trZ5mBmbm8CB0TcmYUqJv5-VizAjNx0xKKoU8QwPGJzpTmojzP6-kukSjGL8I2VcVU0QP0GexMm0LYQkR-4DfoLewSb4L2IQG34P18RBezLcPS-y6HpchQdv6JYSEp9vUrbvkfwAvYOVtC_EOT3FhIuD3tG12V-jCmTbC6KRD9PH4MC-es9nrU1lMZ5llOU-ZMHWuJNGNcILIxrkJiLpmDLjTTvDaai60apQ0ttYsb8CBbnJGNBWUWSH4EJHjr-27GHtw1ab3a9PvKkqqA6Jqj6g6IKpOiPaTm-PEA8B_fSKE0oLzXzXJYsY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Challenges in Perception and Decision Making for Intelligent Automotive Vehicles: A Case Study</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Okumura, Bunyo ; James, Michael R. ; Kanzawa, Yusuke ; Derry, Matthew ; Sakai, Katsuhiro ; Nishi, Tomoki ; Prokhorov, Danil</creator><creatorcontrib>Okumura, Bunyo ; James, Michael R. ; Kanzawa, Yusuke ; Derry, Matthew ; Sakai, Katsuhiro ; Nishi, Tomoki ; Prokhorov, Danil</creatorcontrib><description>This paper overviews challenges in perception and decision making for intelligent, or highly automated, automotive vehicles. We illustrate our development of a complete perception and decision making system which addresses various challenges and propose an action planning method for highly automated vehicles which can merge into a roundabout. We use learning from demonstration to construct a classifier for high-level decision making, and develop a novel set of formulations that is suited to this challenging situation: multiple agents in a highly dynamic environment with interdependencies between agents, partial observability, and a limited amount of training data. Having limited amount of labeled training data is highly constraining, but a very real issue in real-world applications. We believe that our formulations are also well suited to other automated driving scenarios.</description><identifier>ISSN: 2379-8858</identifier><identifier>EISSN: 2379-8904</identifier><identifier>DOI: 10.1109/TIV.2016.2551545</identifier><identifier>CODEN: ITIVBL</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automata ; Autonomous driving ; classifier ; Decision making ; finite state machine ; high-definition lidar ; high-fidelity map ; Laser radar ; learning from demonstration ; Machine learning ; robot ; Robot sensing systems ; roundabout ; state representation ; Support vector machine classification</subject><ispartof>IEEE transactions on intelligent vehicles, 2016-03, Vol.1 (1), p.20-32</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-4ab68509d4f405dff7e4bb22e3f9f43bc93498d85acb926defe9d62091412c443</citedby><cites>FETCH-LOGICAL-c263t-4ab68509d4f405dff7e4bb22e3f9f43bc93498d85acb926defe9d62091412c443</cites><orcidid>0000-0002-6208-4233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7448943$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Okumura, Bunyo</creatorcontrib><creatorcontrib>James, Michael R.</creatorcontrib><creatorcontrib>Kanzawa, Yusuke</creatorcontrib><creatorcontrib>Derry, Matthew</creatorcontrib><creatorcontrib>Sakai, Katsuhiro</creatorcontrib><creatorcontrib>Nishi, Tomoki</creatorcontrib><creatorcontrib>Prokhorov, Danil</creatorcontrib><title>Challenges in Perception and Decision Making for Intelligent Automotive Vehicles: A Case Study</title><title>IEEE transactions on intelligent vehicles</title><addtitle>TIV</addtitle><description>This paper overviews challenges in perception and decision making for intelligent, or highly automated, automotive vehicles. We illustrate our development of a complete perception and decision making system which addresses various challenges and propose an action planning method for highly automated vehicles which can merge into a roundabout. We use learning from demonstration to construct a classifier for high-level decision making, and develop a novel set of formulations that is suited to this challenging situation: multiple agents in a highly dynamic environment with interdependencies between agents, partial observability, and a limited amount of training data. Having limited amount of labeled training data is highly constraining, but a very real issue in real-world applications. We believe that our formulations are also well suited to other automated driving scenarios.</description><subject>Automata</subject><subject>Autonomous driving</subject><subject>classifier</subject><subject>Decision making</subject><subject>finite state machine</subject><subject>high-definition lidar</subject><subject>high-fidelity map</subject><subject>Laser radar</subject><subject>learning from demonstration</subject><subject>Machine learning</subject><subject>robot</subject><subject>Robot sensing systems</subject><subject>roundabout</subject><subject>state representation</subject><subject>Support vector machine classification</subject><issn>2379-8858</issn><issn>2379-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEYhIMoWGrvgpf8ga353Cbeyvq1UFGw9uiSzb5po9ts2aRC_70trZ5mBmbm8CB0TcmYUqJv5-VizAjNx0xKKoU8QwPGJzpTmojzP6-kukSjGL8I2VcVU0QP0GexMm0LYQkR-4DfoLewSb4L2IQG34P18RBezLcPS-y6HpchQdv6JYSEp9vUrbvkfwAvYOVtC_EOT3FhIuD3tG12V-jCmTbC6KRD9PH4MC-es9nrU1lMZ5llOU-ZMHWuJNGNcILIxrkJiLpmDLjTTvDaai60apQ0ttYsb8CBbnJGNBWUWSH4EJHjr-27GHtw1ab3a9PvKkqqA6Jqj6g6IKpOiPaTm-PEA8B_fSKE0oLzXzXJYsY</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Okumura, Bunyo</creator><creator>James, Michael R.</creator><creator>Kanzawa, Yusuke</creator><creator>Derry, Matthew</creator><creator>Sakai, Katsuhiro</creator><creator>Nishi, Tomoki</creator><creator>Prokhorov, Danil</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6208-4233</orcidid></search><sort><creationdate>20160301</creationdate><title>Challenges in Perception and Decision Making for Intelligent Automotive Vehicles: A Case Study</title><author>Okumura, Bunyo ; James, Michael R. ; Kanzawa, Yusuke ; Derry, Matthew ; Sakai, Katsuhiro ; Nishi, Tomoki ; Prokhorov, Danil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-4ab68509d4f405dff7e4bb22e3f9f43bc93498d85acb926defe9d62091412c443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automata</topic><topic>Autonomous driving</topic><topic>classifier</topic><topic>Decision making</topic><topic>finite state machine</topic><topic>high-definition lidar</topic><topic>high-fidelity map</topic><topic>Laser radar</topic><topic>learning from demonstration</topic><topic>Machine learning</topic><topic>robot</topic><topic>Robot sensing systems</topic><topic>roundabout</topic><topic>state representation</topic><topic>Support vector machine classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okumura, Bunyo</creatorcontrib><creatorcontrib>James, Michael R.</creatorcontrib><creatorcontrib>Kanzawa, Yusuke</creatorcontrib><creatorcontrib>Derry, Matthew</creatorcontrib><creatorcontrib>Sakai, Katsuhiro</creatorcontrib><creatorcontrib>Nishi, Tomoki</creatorcontrib><creatorcontrib>Prokhorov, Danil</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okumura, Bunyo</au><au>James, Michael R.</au><au>Kanzawa, Yusuke</au><au>Derry, Matthew</au><au>Sakai, Katsuhiro</au><au>Nishi, Tomoki</au><au>Prokhorov, Danil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Challenges in Perception and Decision Making for Intelligent Automotive Vehicles: A Case Study</atitle><jtitle>IEEE transactions on intelligent vehicles</jtitle><stitle>TIV</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>1</volume><issue>1</issue><spage>20</spage><epage>32</epage><pages>20-32</pages><issn>2379-8858</issn><eissn>2379-8904</eissn><coden>ITIVBL</coden><abstract>This paper overviews challenges in perception and decision making for intelligent, or highly automated, automotive vehicles. We illustrate our development of a complete perception and decision making system which addresses various challenges and propose an action planning method for highly automated vehicles which can merge into a roundabout. We use learning from demonstration to construct a classifier for high-level decision making, and develop a novel set of formulations that is suited to this challenging situation: multiple agents in a highly dynamic environment with interdependencies between agents, partial observability, and a limited amount of training data. Having limited amount of labeled training data is highly constraining, but a very real issue in real-world applications. We believe that our formulations are also well suited to other automated driving scenarios.</abstract><pub>IEEE</pub><doi>10.1109/TIV.2016.2551545</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6208-4233</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2379-8858 |
ispartof | IEEE transactions on intelligent vehicles, 2016-03, Vol.1 (1), p.20-32 |
issn | 2379-8858 2379-8904 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIV_2016_2551545 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Automata Autonomous driving classifier Decision making finite state machine high-definition lidar high-fidelity map Laser radar learning from demonstration Machine learning robot Robot sensing systems roundabout state representation Support vector machine classification |
title | Challenges in Perception and Decision Making for Intelligent Automotive Vehicles: A Case Study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A42%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Challenges%20in%20Perception%20and%20Decision%20Making%20for%20Intelligent%20Automotive%20Vehicles:%20A%20Case%20Study&rft.jtitle=IEEE%20transactions%20on%20intelligent%20vehicles&rft.au=Okumura,%20Bunyo&rft.date=2016-03-01&rft.volume=1&rft.issue=1&rft.spage=20&rft.epage=32&rft.pages=20-32&rft.issn=2379-8858&rft.eissn=2379-8904&rft.coden=ITIVBL&rft_id=info:doi/10.1109/TIV.2016.2551545&rft_dat=%3Ccrossref_ieee_%3E10_1109_TIV_2016_2551545%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-4ab68509d4f405dff7e4bb22e3f9f43bc93498d85acb926defe9d62091412c443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7448943&rfr_iscdi=true |