Loading…
Incorporating Human Domain Knowledge in 3-D LiDAR-Based Semantic Segmentation
This article studies semantic segmentation using 3D LiDAR data. Popular deep learning methods applied for this task require a large number of manual annotations to train the parameters. We propose a new method that makes full use of the advantages of traditional methods and deep learning methods via...
Saved in:
Published in: | IEEE transactions on intelligent vehicles 2020-06, Vol.5 (2), p.178-187 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-c9dcc2f5aa8759affa02a172b9febf3f850a299b16882b2932fe708c3d4df1253 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-c9dcc2f5aa8759affa02a172b9febf3f850a299b16882b2932fe708c3d4df1253 |
container_end_page | 187 |
container_issue | 2 |
container_start_page | 178 |
container_title | IEEE transactions on intelligent vehicles |
container_volume | 5 |
creator | Mei, Jilin Zhao, Huijing |
description | This article studies semantic segmentation using 3D LiDAR data. Popular deep learning methods applied for this task require a large number of manual annotations to train the parameters. We propose a new method that makes full use of the advantages of traditional methods and deep learning methods via incorporating human domain knowledge into the neural network model to reduce the demand for large numbers of manual annotations and improve the training efficiency. We first pretrain a model with autogenerated samples from a rule-based classifier so that human knowledge can be propagated into the network. Based on the pretrained model, only a small set of annotations is required for further fine-tuning. Quantitative experiments show that the pretrained model achieves better performance than random initialization in almost all cases; furthermore, our method can achieve similar performance with fewer manual annotations. |
doi_str_mv | 10.1109/TIV.2019.2955851 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIV_2019_2955851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8911436</ieee_id><sourcerecordid>2407037187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c9dcc2f5aa8759affa02a172b9febf3f850a299b16882b2932fe708c3d4df1253</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWGrvgpcFz1snyaabHGurdrEiaPUastmkbOkmNdki_ntTWj3NDLxvZngIXWMYYwziblV9jglgMSaCMc7wGRoQWoqcCyjO_3rO-CUaxbgBADzhhIMYoJfKaR92Pqi-detsse-Uy-a-U63Lnp3_3ppmbbI00HyeLdv59C2_V9E02btJZN_q1Kw74_qU9-4KXVi1jWZ0qkP08fiwmi3y5etTNZsuc00E7nMtGq2JZUrxkgllrQKicElqYU1tqeUMFBGiTl9yUhNBiTUlcE2borGYMDpEt8e9u-C_9ib2cuP3waWTkhRQAi0xLxMFR0oHH2MwVu5C26nwIzHIgzeZvMmDN3nyliI3x0hrjPnHucC4oBP6CzE6Z_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407037187</pqid></control><display><type>article</type><title>Incorporating Human Domain Knowledge in 3-D LiDAR-Based Semantic Segmentation</title><source>IEEE Xplore (Online service)</source><creator>Mei, Jilin ; Zhao, Huijing</creator><creatorcontrib>Mei, Jilin ; Zhao, Huijing</creatorcontrib><description>This article studies semantic segmentation using 3D LiDAR data. Popular deep learning methods applied for this task require a large number of manual annotations to train the parameters. We propose a new method that makes full use of the advantages of traditional methods and deep learning methods via incorporating human domain knowledge into the neural network model to reduce the demand for large numbers of manual annotations and improve the training efficiency. We first pretrain a model with autogenerated samples from a rule-based classifier so that human knowledge can be propagated into the network. Based on the pretrained model, only a small set of annotations is required for further fine-tuning. Quantitative experiments show that the pretrained model achieves better performance than random initialization in almost all cases; furthermore, our method can achieve similar performance with fewer manual annotations.</description><identifier>ISSN: 2379-8858</identifier><identifier>EISSN: 2379-8904</identifier><identifier>DOI: 10.1109/TIV.2019.2955851</identifier><identifier>CODEN: ITIVBL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3D LiDAR data ; Annotations ; Deep learning ; Domains ; human domain knowledge ; Image annotation ; Image segmentation ; Laser radar ; Lidar ; Machine learning ; Manuals ; Neural networks ; Semantic segmentation ; Semantics ; Teaching methods ; Three-dimensional displays</subject><ispartof>IEEE transactions on intelligent vehicles, 2020-06, Vol.5 (2), p.178-187</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c9dcc2f5aa8759affa02a172b9febf3f850a299b16882b2932fe708c3d4df1253</citedby><cites>FETCH-LOGICAL-c291t-c9dcc2f5aa8759affa02a172b9febf3f850a299b16882b2932fe708c3d4df1253</cites><orcidid>0000-0001-9245-3039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8911436$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Mei, Jilin</creatorcontrib><creatorcontrib>Zhao, Huijing</creatorcontrib><title>Incorporating Human Domain Knowledge in 3-D LiDAR-Based Semantic Segmentation</title><title>IEEE transactions on intelligent vehicles</title><addtitle>TIV</addtitle><description>This article studies semantic segmentation using 3D LiDAR data. Popular deep learning methods applied for this task require a large number of manual annotations to train the parameters. We propose a new method that makes full use of the advantages of traditional methods and deep learning methods via incorporating human domain knowledge into the neural network model to reduce the demand for large numbers of manual annotations and improve the training efficiency. We first pretrain a model with autogenerated samples from a rule-based classifier so that human knowledge can be propagated into the network. Based on the pretrained model, only a small set of annotations is required for further fine-tuning. Quantitative experiments show that the pretrained model achieves better performance than random initialization in almost all cases; furthermore, our method can achieve similar performance with fewer manual annotations.</description><subject>3D LiDAR data</subject><subject>Annotations</subject><subject>Deep learning</subject><subject>Domains</subject><subject>human domain knowledge</subject><subject>Image annotation</subject><subject>Image segmentation</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>Machine learning</subject><subject>Manuals</subject><subject>Neural networks</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Teaching methods</subject><subject>Three-dimensional displays</subject><issn>2379-8858</issn><issn>2379-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEQRoMoWGrvgpcFz1snyaabHGurdrEiaPUastmkbOkmNdki_ntTWj3NDLxvZngIXWMYYwziblV9jglgMSaCMc7wGRoQWoqcCyjO_3rO-CUaxbgBADzhhIMYoJfKaR92Pqi-detsse-Uy-a-U63Lnp3_3ppmbbI00HyeLdv59C2_V9E02btJZN_q1Kw74_qU9-4KXVi1jWZ0qkP08fiwmi3y5etTNZsuc00E7nMtGq2JZUrxkgllrQKicElqYU1tqeUMFBGiTl9yUhNBiTUlcE2borGYMDpEt8e9u-C_9ib2cuP3waWTkhRQAi0xLxMFR0oHH2MwVu5C26nwIzHIgzeZvMmDN3nyliI3x0hrjPnHucC4oBP6CzE6Z_g</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Mei, Jilin</creator><creator>Zhao, Huijing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9245-3039</orcidid></search><sort><creationdate>20200601</creationdate><title>Incorporating Human Domain Knowledge in 3-D LiDAR-Based Semantic Segmentation</title><author>Mei, Jilin ; Zhao, Huijing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c9dcc2f5aa8759affa02a172b9febf3f850a299b16882b2932fe708c3d4df1253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D LiDAR data</topic><topic>Annotations</topic><topic>Deep learning</topic><topic>Domains</topic><topic>human domain knowledge</topic><topic>Image annotation</topic><topic>Image segmentation</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>Machine learning</topic><topic>Manuals</topic><topic>Neural networks</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Teaching methods</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Jilin</creatorcontrib><creatorcontrib>Zhao, Huijing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on intelligent vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Jilin</au><au>Zhao, Huijing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating Human Domain Knowledge in 3-D LiDAR-Based Semantic Segmentation</atitle><jtitle>IEEE transactions on intelligent vehicles</jtitle><stitle>TIV</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>5</volume><issue>2</issue><spage>178</spage><epage>187</epage><pages>178-187</pages><issn>2379-8858</issn><eissn>2379-8904</eissn><coden>ITIVBL</coden><abstract>This article studies semantic segmentation using 3D LiDAR data. Popular deep learning methods applied for this task require a large number of manual annotations to train the parameters. We propose a new method that makes full use of the advantages of traditional methods and deep learning methods via incorporating human domain knowledge into the neural network model to reduce the demand for large numbers of manual annotations and improve the training efficiency. We first pretrain a model with autogenerated samples from a rule-based classifier so that human knowledge can be propagated into the network. Based on the pretrained model, only a small set of annotations is required for further fine-tuning. Quantitative experiments show that the pretrained model achieves better performance than random initialization in almost all cases; furthermore, our method can achieve similar performance with fewer manual annotations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TIV.2019.2955851</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9245-3039</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2379-8858 |
ispartof | IEEE transactions on intelligent vehicles, 2020-06, Vol.5 (2), p.178-187 |
issn | 2379-8858 2379-8904 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIV_2019_2955851 |
source | IEEE Xplore (Online service) |
subjects | 3D LiDAR data Annotations Deep learning Domains human domain knowledge Image annotation Image segmentation Laser radar Lidar Machine learning Manuals Neural networks Semantic segmentation Semantics Teaching methods Three-dimensional displays |
title | Incorporating Human Domain Knowledge in 3-D LiDAR-Based Semantic Segmentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A46%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20Human%20Domain%20Knowledge%20in%203-D%20LiDAR-Based%20Semantic%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20intelligent%20vehicles&rft.au=Mei,%20Jilin&rft.date=2020-06-01&rft.volume=5&rft.issue=2&rft.spage=178&rft.epage=187&rft.pages=178-187&rft.issn=2379-8858&rft.eissn=2379-8904&rft.coden=ITIVBL&rft_id=info:doi/10.1109/TIV.2019.2955851&rft_dat=%3Cproquest_cross%3E2407037187%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-c9dcc2f5aa8759affa02a172b9febf3f850a299b16882b2932fe708c3d4df1253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2407037187&rft_id=info:pmid/&rft_ieee_id=8911436&rfr_iscdi=true |