Loading…

Incorporating Human Domain Knowledge in 3-D LiDAR-Based Semantic Segmentation

This article studies semantic segmentation using 3D LiDAR data. Popular deep learning methods applied for this task require a large number of manual annotations to train the parameters. We propose a new method that makes full use of the advantages of traditional methods and deep learning methods via...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent vehicles 2020-06, Vol.5 (2), p.178-187
Main Authors: Mei, Jilin, Zhao, Huijing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-c9dcc2f5aa8759affa02a172b9febf3f850a299b16882b2932fe708c3d4df1253
cites cdi_FETCH-LOGICAL-c291t-c9dcc2f5aa8759affa02a172b9febf3f850a299b16882b2932fe708c3d4df1253
container_end_page 187
container_issue 2
container_start_page 178
container_title IEEE transactions on intelligent vehicles
container_volume 5
creator Mei, Jilin
Zhao, Huijing
description This article studies semantic segmentation using 3D LiDAR data. Popular deep learning methods applied for this task require a large number of manual annotations to train the parameters. We propose a new method that makes full use of the advantages of traditional methods and deep learning methods via incorporating human domain knowledge into the neural network model to reduce the demand for large numbers of manual annotations and improve the training efficiency. We first pretrain a model with autogenerated samples from a rule-based classifier so that human knowledge can be propagated into the network. Based on the pretrained model, only a small set of annotations is required for further fine-tuning. Quantitative experiments show that the pretrained model achieves better performance than random initialization in almost all cases; furthermore, our method can achieve similar performance with fewer manual annotations.
doi_str_mv 10.1109/TIV.2019.2955851
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIV_2019_2955851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8911436</ieee_id><sourcerecordid>2407037187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c9dcc2f5aa8759affa02a172b9febf3f850a299b16882b2932fe708c3d4df1253</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWGrvgpcFz1snyaabHGurdrEiaPUastmkbOkmNdki_ntTWj3NDLxvZngIXWMYYwziblV9jglgMSaCMc7wGRoQWoqcCyjO_3rO-CUaxbgBADzhhIMYoJfKaR92Pqi-detsse-Uy-a-U63Lnp3_3ppmbbI00HyeLdv59C2_V9E02btJZN_q1Kw74_qU9-4KXVi1jWZ0qkP08fiwmi3y5etTNZsuc00E7nMtGq2JZUrxkgllrQKicElqYU1tqeUMFBGiTl9yUhNBiTUlcE2borGYMDpEt8e9u-C_9ib2cuP3waWTkhRQAi0xLxMFR0oHH2MwVu5C26nwIzHIgzeZvMmDN3nyliI3x0hrjPnHucC4oBP6CzE6Z_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407037187</pqid></control><display><type>article</type><title>Incorporating Human Domain Knowledge in 3-D LiDAR-Based Semantic Segmentation</title><source>IEEE Xplore (Online service)</source><creator>Mei, Jilin ; Zhao, Huijing</creator><creatorcontrib>Mei, Jilin ; Zhao, Huijing</creatorcontrib><description>This article studies semantic segmentation using 3D LiDAR data. Popular deep learning methods applied for this task require a large number of manual annotations to train the parameters. We propose a new method that makes full use of the advantages of traditional methods and deep learning methods via incorporating human domain knowledge into the neural network model to reduce the demand for large numbers of manual annotations and improve the training efficiency. We first pretrain a model with autogenerated samples from a rule-based classifier so that human knowledge can be propagated into the network. Based on the pretrained model, only a small set of annotations is required for further fine-tuning. Quantitative experiments show that the pretrained model achieves better performance than random initialization in almost all cases; furthermore, our method can achieve similar performance with fewer manual annotations.</description><identifier>ISSN: 2379-8858</identifier><identifier>EISSN: 2379-8904</identifier><identifier>DOI: 10.1109/TIV.2019.2955851</identifier><identifier>CODEN: ITIVBL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3D LiDAR data ; Annotations ; Deep learning ; Domains ; human domain knowledge ; Image annotation ; Image segmentation ; Laser radar ; Lidar ; Machine learning ; Manuals ; Neural networks ; Semantic segmentation ; Semantics ; Teaching methods ; Three-dimensional displays</subject><ispartof>IEEE transactions on intelligent vehicles, 2020-06, Vol.5 (2), p.178-187</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c9dcc2f5aa8759affa02a172b9febf3f850a299b16882b2932fe708c3d4df1253</citedby><cites>FETCH-LOGICAL-c291t-c9dcc2f5aa8759affa02a172b9febf3f850a299b16882b2932fe708c3d4df1253</cites><orcidid>0000-0001-9245-3039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8911436$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Mei, Jilin</creatorcontrib><creatorcontrib>Zhao, Huijing</creatorcontrib><title>Incorporating Human Domain Knowledge in 3-D LiDAR-Based Semantic Segmentation</title><title>IEEE transactions on intelligent vehicles</title><addtitle>TIV</addtitle><description>This article studies semantic segmentation using 3D LiDAR data. Popular deep learning methods applied for this task require a large number of manual annotations to train the parameters. We propose a new method that makes full use of the advantages of traditional methods and deep learning methods via incorporating human domain knowledge into the neural network model to reduce the demand for large numbers of manual annotations and improve the training efficiency. We first pretrain a model with autogenerated samples from a rule-based classifier so that human knowledge can be propagated into the network. Based on the pretrained model, only a small set of annotations is required for further fine-tuning. Quantitative experiments show that the pretrained model achieves better performance than random initialization in almost all cases; furthermore, our method can achieve similar performance with fewer manual annotations.</description><subject>3D LiDAR data</subject><subject>Annotations</subject><subject>Deep learning</subject><subject>Domains</subject><subject>human domain knowledge</subject><subject>Image annotation</subject><subject>Image segmentation</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>Machine learning</subject><subject>Manuals</subject><subject>Neural networks</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Teaching methods</subject><subject>Three-dimensional displays</subject><issn>2379-8858</issn><issn>2379-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEQRoMoWGrvgpcFz1snyaabHGurdrEiaPUastmkbOkmNdki_ntTWj3NDLxvZngIXWMYYwziblV9jglgMSaCMc7wGRoQWoqcCyjO_3rO-CUaxbgBADzhhIMYoJfKaR92Pqi-detsse-Uy-a-U63Lnp3_3ppmbbI00HyeLdv59C2_V9E02btJZN_q1Kw74_qU9-4KXVi1jWZ0qkP08fiwmi3y5etTNZsuc00E7nMtGq2JZUrxkgllrQKicElqYU1tqeUMFBGiTl9yUhNBiTUlcE2borGYMDpEt8e9u-C_9ib2cuP3waWTkhRQAi0xLxMFR0oHH2MwVu5C26nwIzHIgzeZvMmDN3nyliI3x0hrjPnHucC4oBP6CzE6Z_g</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Mei, Jilin</creator><creator>Zhao, Huijing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9245-3039</orcidid></search><sort><creationdate>20200601</creationdate><title>Incorporating Human Domain Knowledge in 3-D LiDAR-Based Semantic Segmentation</title><author>Mei, Jilin ; Zhao, Huijing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c9dcc2f5aa8759affa02a172b9febf3f850a299b16882b2932fe708c3d4df1253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D LiDAR data</topic><topic>Annotations</topic><topic>Deep learning</topic><topic>Domains</topic><topic>human domain knowledge</topic><topic>Image annotation</topic><topic>Image segmentation</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>Machine learning</topic><topic>Manuals</topic><topic>Neural networks</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Teaching methods</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Jilin</creatorcontrib><creatorcontrib>Zhao, Huijing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on intelligent vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Jilin</au><au>Zhao, Huijing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating Human Domain Knowledge in 3-D LiDAR-Based Semantic Segmentation</atitle><jtitle>IEEE transactions on intelligent vehicles</jtitle><stitle>TIV</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>5</volume><issue>2</issue><spage>178</spage><epage>187</epage><pages>178-187</pages><issn>2379-8858</issn><eissn>2379-8904</eissn><coden>ITIVBL</coden><abstract>This article studies semantic segmentation using 3D LiDAR data. Popular deep learning methods applied for this task require a large number of manual annotations to train the parameters. We propose a new method that makes full use of the advantages of traditional methods and deep learning methods via incorporating human domain knowledge into the neural network model to reduce the demand for large numbers of manual annotations and improve the training efficiency. We first pretrain a model with autogenerated samples from a rule-based classifier so that human knowledge can be propagated into the network. Based on the pretrained model, only a small set of annotations is required for further fine-tuning. Quantitative experiments show that the pretrained model achieves better performance than random initialization in almost all cases; furthermore, our method can achieve similar performance with fewer manual annotations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TIV.2019.2955851</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9245-3039</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2379-8858
ispartof IEEE transactions on intelligent vehicles, 2020-06, Vol.5 (2), p.178-187
issn 2379-8858
2379-8904
language eng
recordid cdi_crossref_primary_10_1109_TIV_2019_2955851
source IEEE Xplore (Online service)
subjects 3D LiDAR data
Annotations
Deep learning
Domains
human domain knowledge
Image annotation
Image segmentation
Laser radar
Lidar
Machine learning
Manuals
Neural networks
Semantic segmentation
Semantics
Teaching methods
Three-dimensional displays
title Incorporating Human Domain Knowledge in 3-D LiDAR-Based Semantic Segmentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A46%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20Human%20Domain%20Knowledge%20in%203-D%20LiDAR-Based%20Semantic%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20intelligent%20vehicles&rft.au=Mei,%20Jilin&rft.date=2020-06-01&rft.volume=5&rft.issue=2&rft.spage=178&rft.epage=187&rft.pages=178-187&rft.issn=2379-8858&rft.eissn=2379-8904&rft.coden=ITIVBL&rft_id=info:doi/10.1109/TIV.2019.2955851&rft_dat=%3Cproquest_cross%3E2407037187%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-c9dcc2f5aa8759affa02a172b9febf3f850a299b16882b2932fe708c3d4df1253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2407037187&rft_id=info:pmid/&rft_ieee_id=8911436&rfr_iscdi=true