Loading…

A Group Incremental Approach to Feature Selection Applying Rough Set Technique

Many real data increase dynamically in size. This phenomenon occurs in several fields including economics, population studies, and medical research. As an effective and efficient mechanism to deal with such data, incremental technique has been proposed in the literature and attracted much attention,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering 2014-02, Vol.26 (2), p.294-308
Main Authors: Jiye Liang, Feng Wang, Chuangyin Dang, Yuhua Qian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many real data increase dynamically in size. This phenomenon occurs in several fields including economics, population studies, and medical research. As an effective and efficient mechanism to deal with such data, incremental technique has been proposed in the literature and attracted much attention, which stimulates the result in this paper. When a group of objects are added to a decision table, we first introduce incremental mechanisms for three representative information entropies and then develop a group incremental rough feature selection algorithm based on information entropy. When multiple objects are added to a decision table, the algorithm aims to find the new feature subset in a much shorter time. Experiments have been carried out on eight UCI data sets and the experimental results show that the algorithm is effective and efficient.
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2012.146