Loading…

Node Immunization on Large Graphs: Theory and Algorithms

Given a large graph, like a computer communication network, which k nodes should we immunize (or monitor, or remove), to make it as robust as possible against a computer virus attack? This problem, referred to as the node immunization problem, is the core building block in many high-impact applicati...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering 2016-01, Vol.28 (1), p.113-126
Main Authors: Chen Chen, Hanghang Tong, Prakash, B. Aditya, Tsourakakis, Charalampos E., Eliassi-Rad, Tina, Faloutsos, Christos, Duen Horng Chau
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given a large graph, like a computer communication network, which k nodes should we immunize (or monitor, or remove), to make it as robust as possible against a computer virus attack? This problem, referred to as the node immunization problem, is the core building block in many high-impact applications, ranging from public health, cybersecurity to viral marketing. A central component in node immunization is to find the best k bridges of a given graph. In this setting, we typically want to determine the relative importance of a node (or a set of nodes) within the graph, for example, how valuable (as a bridge) a person or a group of persons is in a social network. First of all, we propose a novel `bridging' score Dλ, inspired by immunology, and we show that its results agree with intuition for several realistic settings. Since the straightforward way to compute Dλ is computationally intractable, we then focus on the computational issues and propose a surprisingly efficient way (O(nk 2 + m)) to estimate it. Experimental results on real graphs show that (1) the proposed `bridging' score gives mining results consistent with intuition; and (2) the proposed fast solution is up to seven orders of magnitude faster than straightforward alternatives.
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2015.2465378