Loading…
When Behavior Analysis Meets Social Network Alignment
Recently, aligning users among different social networks has received significant attention. However, most of the existing studies do not consider users' behavior information during the aligning procedure and thus still suffer from poor learning performance. In fact, we observe that social netw...
Saved in:
Published in: | IEEE transactions on knowledge and data engineering 2023-07, Vol.35 (7), p.7590-7607 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-32c0b88a92e05667d576de1b58be5f5a43c710f2875dd435ed18928c3250fd703 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-32c0b88a92e05667d576de1b58be5f5a43c710f2875dd435ed18928c3250fd703 |
container_end_page | 7607 |
container_issue | 7 |
container_start_page | 7590 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 35 |
creator | Zhang, Zhongbao Ren, Fuxin Zhang, Jiawei Su, Sen Yan, Yang Wei, Qian Sun, Li Zhu, Guozhen Guo, Congying |
description | Recently, aligning users among different social networks has received significant attention. However, most of the existing studies do not consider users' behavior information during the aligning procedure and thus still suffer from poor learning performance. In fact, we observe that social network alignment and user behavior analysis can benefit from each other. Motivated by such an observation, we propose to jointly study the social network alignment and user behavior analysis problem in this paper. We design a novel framework named BANANA-RGB. In this framework, to capture users' multi-scale behavior information in each social network, we train a variant of the hierarchical periodic memory network with personalized memorization. To leverage behavior analysis for social network alignment, we design a tensor fusion network-based alignment component to improve the performance. To further leverage social network alignment for behavior analysis, we design a gating-based cross-network behavior fusion component to integrate users' behavior information in different social networks based on the alignment result. We iteratively train the above two components to make the two tasks benefit from each other. Extensive experiments on real-world datasets demonstrate that our proposed approach outperforms the state-of-the-art methods. |
doi_str_mv | 10.1109/TKDE.2022.3197985 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2022_3197985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9854153</ieee_id><sourcerecordid>2823193061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-32c0b88a92e05667d576de1b58be5f5a43c710f2875dd435ed18928c3250fd703</originalsourceid><addsrcrecordid>eNo9kMFOwzAMhiMEEmPwAIhLJc4ddtI0yXGMDRADDgxxjLLWZR1dO5IOtLen0yZOtuTvt-yPsUuEASKYm9nT3XjAgfOBQKOMlkesh1LqmKPB466HBONEJOqUnYWwBACtNPaY_FhQHd3Swv2UjY-Gtau2oQzRM1EborcmK10VvVD72_ivaFiVn_WK6vacnRSuCnRxqH32PhnPRg_x9PX-cTScxhk3oo0Fz2CutTOcQKapyqVKc8K51HOShXSJyBRCwbWSeZ4ISTlqw3UmuIQiVyD67Hq_d-2b7w2F1i6bje9uDJZr3n0qIMWOwj2V-SYET4Vd-3Ll_NYi2J0du7Njd3bswU6XudpnSiL657tJglKIP81qXpM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823193061</pqid></control><display><type>article</type><title>When Behavior Analysis Meets Social Network Alignment</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhang, Zhongbao ; Ren, Fuxin ; Zhang, Jiawei ; Su, Sen ; Yan, Yang ; Wei, Qian ; Sun, Li ; Zhu, Guozhen ; Guo, Congying</creator><creatorcontrib>Zhang, Zhongbao ; Ren, Fuxin ; Zhang, Jiawei ; Su, Sen ; Yan, Yang ; Wei, Qian ; Sun, Li ; Zhu, Guozhen ; Guo, Congying</creatorcontrib><description>Recently, aligning users among different social networks has received significant attention. However, most of the existing studies do not consider users' behavior information during the aligning procedure and thus still suffer from poor learning performance. In fact, we observe that social network alignment and user behavior analysis can benefit from each other. Motivated by such an observation, we propose to jointly study the social network alignment and user behavior analysis problem in this paper. We design a novel framework named BANANA-RGB. In this framework, to capture users' multi-scale behavior information in each social network, we train a variant of the hierarchical periodic memory network with personalized memorization. To leverage behavior analysis for social network alignment, we design a tensor fusion network-based alignment component to improve the performance. To further leverage social network alignment for behavior analysis, we design a gating-based cross-network behavior fusion component to integrate users' behavior information in different social networks based on the alignment result. We iteratively train the above two components to make the two tasks benefit from each other. Extensive experiments on real-world datasets demonstrate that our proposed approach outperforms the state-of-the-art methods.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3197985</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alignment ; behavior analysis ; Behavioral sciences ; Correlation ; Data mining ; Performance enhancement ; Predictive analytics ; Social network alignment ; Social networking (online) ; Social networks ; Task analysis ; Tensors ; User behavior</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-07, Vol.35 (7), p.7590-7607</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-32c0b88a92e05667d576de1b58be5f5a43c710f2875dd435ed18928c3250fd703</citedby><cites>FETCH-LOGICAL-c293t-32c0b88a92e05667d576de1b58be5f5a43c710f2875dd435ed18928c3250fd703</cites><orcidid>0000-0003-1234-0515 ; 0000-0003-4266-7527 ; 0000-0003-4562-2279 ; 0000-0002-3242-150X ; 0000-0002-2111-7617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9854153$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Zhang, Zhongbao</creatorcontrib><creatorcontrib>Ren, Fuxin</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Su, Sen</creatorcontrib><creatorcontrib>Yan, Yang</creatorcontrib><creatorcontrib>Wei, Qian</creatorcontrib><creatorcontrib>Sun, Li</creatorcontrib><creatorcontrib>Zhu, Guozhen</creatorcontrib><creatorcontrib>Guo, Congying</creatorcontrib><title>When Behavior Analysis Meets Social Network Alignment</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Recently, aligning users among different social networks has received significant attention. However, most of the existing studies do not consider users' behavior information during the aligning procedure and thus still suffer from poor learning performance. In fact, we observe that social network alignment and user behavior analysis can benefit from each other. Motivated by such an observation, we propose to jointly study the social network alignment and user behavior analysis problem in this paper. We design a novel framework named BANANA-RGB. In this framework, to capture users' multi-scale behavior information in each social network, we train a variant of the hierarchical periodic memory network with personalized memorization. To leverage behavior analysis for social network alignment, we design a tensor fusion network-based alignment component to improve the performance. To further leverage social network alignment for behavior analysis, we design a gating-based cross-network behavior fusion component to integrate users' behavior information in different social networks based on the alignment result. We iteratively train the above two components to make the two tasks benefit from each other. Extensive experiments on real-world datasets demonstrate that our proposed approach outperforms the state-of-the-art methods.</description><subject>Alignment</subject><subject>behavior analysis</subject><subject>Behavioral sciences</subject><subject>Correlation</subject><subject>Data mining</subject><subject>Performance enhancement</subject><subject>Predictive analytics</subject><subject>Social network alignment</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>Task analysis</subject><subject>Tensors</subject><subject>User behavior</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOwzAMhiMEEmPwAIhLJc4ddtI0yXGMDRADDgxxjLLWZR1dO5IOtLen0yZOtuTvt-yPsUuEASKYm9nT3XjAgfOBQKOMlkesh1LqmKPB466HBONEJOqUnYWwBACtNPaY_FhQHd3Swv2UjY-Gtau2oQzRM1EborcmK10VvVD72_ivaFiVn_WK6vacnRSuCnRxqH32PhnPRg_x9PX-cTScxhk3oo0Fz2CutTOcQKapyqVKc8K51HOShXSJyBRCwbWSeZ4ISTlqw3UmuIQiVyD67Hq_d-2b7w2F1i6bje9uDJZr3n0qIMWOwj2V-SYET4Vd-3Ll_NYi2J0du7Njd3bswU6XudpnSiL657tJglKIP81qXpM</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Zhang, Zhongbao</creator><creator>Ren, Fuxin</creator><creator>Zhang, Jiawei</creator><creator>Su, Sen</creator><creator>Yan, Yang</creator><creator>Wei, Qian</creator><creator>Sun, Li</creator><creator>Zhu, Guozhen</creator><creator>Guo, Congying</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1234-0515</orcidid><orcidid>https://orcid.org/0000-0003-4266-7527</orcidid><orcidid>https://orcid.org/0000-0003-4562-2279</orcidid><orcidid>https://orcid.org/0000-0002-3242-150X</orcidid><orcidid>https://orcid.org/0000-0002-2111-7617</orcidid></search><sort><creationdate>20230701</creationdate><title>When Behavior Analysis Meets Social Network Alignment</title><author>Zhang, Zhongbao ; Ren, Fuxin ; Zhang, Jiawei ; Su, Sen ; Yan, Yang ; Wei, Qian ; Sun, Li ; Zhu, Guozhen ; Guo, Congying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-32c0b88a92e05667d576de1b58be5f5a43c710f2875dd435ed18928c3250fd703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alignment</topic><topic>behavior analysis</topic><topic>Behavioral sciences</topic><topic>Correlation</topic><topic>Data mining</topic><topic>Performance enhancement</topic><topic>Predictive analytics</topic><topic>Social network alignment</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>Task analysis</topic><topic>Tensors</topic><topic>User behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhongbao</creatorcontrib><creatorcontrib>Ren, Fuxin</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Su, Sen</creatorcontrib><creatorcontrib>Yan, Yang</creatorcontrib><creatorcontrib>Wei, Qian</creatorcontrib><creatorcontrib>Sun, Li</creatorcontrib><creatorcontrib>Zhu, Guozhen</creatorcontrib><creatorcontrib>Guo, Congying</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhongbao</au><au>Ren, Fuxin</au><au>Zhang, Jiawei</au><au>Su, Sen</au><au>Yan, Yang</au><au>Wei, Qian</au><au>Sun, Li</au><au>Zhu, Guozhen</au><au>Guo, Congying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>When Behavior Analysis Meets Social Network Alignment</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>35</volume><issue>7</issue><spage>7590</spage><epage>7607</epage><pages>7590-7607</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Recently, aligning users among different social networks has received significant attention. However, most of the existing studies do not consider users' behavior information during the aligning procedure and thus still suffer from poor learning performance. In fact, we observe that social network alignment and user behavior analysis can benefit from each other. Motivated by such an observation, we propose to jointly study the social network alignment and user behavior analysis problem in this paper. We design a novel framework named BANANA-RGB. In this framework, to capture users' multi-scale behavior information in each social network, we train a variant of the hierarchical periodic memory network with personalized memorization. To leverage behavior analysis for social network alignment, we design a tensor fusion network-based alignment component to improve the performance. To further leverage social network alignment for behavior analysis, we design a gating-based cross-network behavior fusion component to integrate users' behavior information in different social networks based on the alignment result. We iteratively train the above two components to make the two tasks benefit from each other. Extensive experiments on real-world datasets demonstrate that our proposed approach outperforms the state-of-the-art methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3197985</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1234-0515</orcidid><orcidid>https://orcid.org/0000-0003-4266-7527</orcidid><orcidid>https://orcid.org/0000-0003-4562-2279</orcidid><orcidid>https://orcid.org/0000-0002-3242-150X</orcidid><orcidid>https://orcid.org/0000-0002-2111-7617</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2023-07, Vol.35 (7), p.7590-7607 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TKDE_2022_3197985 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Alignment behavior analysis Behavioral sciences Correlation Data mining Performance enhancement Predictive analytics Social network alignment Social networking (online) Social networks Task analysis Tensors User behavior |
title | When Behavior Analysis Meets Social Network Alignment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A43%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=When%20Behavior%20Analysis%20Meets%20Social%20Network%20Alignment&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Zhang,%20Zhongbao&rft.date=2023-07-01&rft.volume=35&rft.issue=7&rft.spage=7590&rft.epage=7607&rft.pages=7590-7607&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3197985&rft_dat=%3Cproquest_cross%3E2823193061%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-32c0b88a92e05667d576de1b58be5f5a43c710f2875dd435ed18928c3250fd703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2823193061&rft_id=info:pmid/&rft_ieee_id=9854153&rfr_iscdi=true |