Loading…

When Behavior Analysis Meets Social Network Alignment

Recently, aligning users among different social networks has received significant attention. However, most of the existing studies do not consider users' behavior information during the aligning procedure and thus still suffer from poor learning performance. In fact, we observe that social netw...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering 2023-07, Vol.35 (7), p.7590-7607
Main Authors: Zhang, Zhongbao, Ren, Fuxin, Zhang, Jiawei, Su, Sen, Yan, Yang, Wei, Qian, Sun, Li, Zhu, Guozhen, Guo, Congying
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-32c0b88a92e05667d576de1b58be5f5a43c710f2875dd435ed18928c3250fd703
cites cdi_FETCH-LOGICAL-c293t-32c0b88a92e05667d576de1b58be5f5a43c710f2875dd435ed18928c3250fd703
container_end_page 7607
container_issue 7
container_start_page 7590
container_title IEEE transactions on knowledge and data engineering
container_volume 35
creator Zhang, Zhongbao
Ren, Fuxin
Zhang, Jiawei
Su, Sen
Yan, Yang
Wei, Qian
Sun, Li
Zhu, Guozhen
Guo, Congying
description Recently, aligning users among different social networks has received significant attention. However, most of the existing studies do not consider users' behavior information during the aligning procedure and thus still suffer from poor learning performance. In fact, we observe that social network alignment and user behavior analysis can benefit from each other. Motivated by such an observation, we propose to jointly study the social network alignment and user behavior analysis problem in this paper. We design a novel framework named BANANA-RGB. In this framework, to capture users' multi-scale behavior information in each social network, we train a variant of the hierarchical periodic memory network with personalized memorization. To leverage behavior analysis for social network alignment, we design a tensor fusion network-based alignment component to improve the performance. To further leverage social network alignment for behavior analysis, we design a gating-based cross-network behavior fusion component to integrate users' behavior information in different social networks based on the alignment result. We iteratively train the above two components to make the two tasks benefit from each other. Extensive experiments on real-world datasets demonstrate that our proposed approach outperforms the state-of-the-art methods.
doi_str_mv 10.1109/TKDE.2022.3197985
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2022_3197985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9854153</ieee_id><sourcerecordid>2823193061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-32c0b88a92e05667d576de1b58be5f5a43c710f2875dd435ed18928c3250fd703</originalsourceid><addsrcrecordid>eNo9kMFOwzAMhiMEEmPwAIhLJc4ddtI0yXGMDRADDgxxjLLWZR1dO5IOtLen0yZOtuTvt-yPsUuEASKYm9nT3XjAgfOBQKOMlkesh1LqmKPB466HBONEJOqUnYWwBACtNPaY_FhQHd3Swv2UjY-Gtau2oQzRM1EborcmK10VvVD72_ivaFiVn_WK6vacnRSuCnRxqH32PhnPRg_x9PX-cTScxhk3oo0Fz2CutTOcQKapyqVKc8K51HOShXSJyBRCwbWSeZ4ISTlqw3UmuIQiVyD67Hq_d-2b7w2F1i6bje9uDJZr3n0qIMWOwj2V-SYET4Vd-3Ll_NYi2J0du7Njd3bswU6XudpnSiL657tJglKIP81qXpM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823193061</pqid></control><display><type>article</type><title>When Behavior Analysis Meets Social Network Alignment</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhang, Zhongbao ; Ren, Fuxin ; Zhang, Jiawei ; Su, Sen ; Yan, Yang ; Wei, Qian ; Sun, Li ; Zhu, Guozhen ; Guo, Congying</creator><creatorcontrib>Zhang, Zhongbao ; Ren, Fuxin ; Zhang, Jiawei ; Su, Sen ; Yan, Yang ; Wei, Qian ; Sun, Li ; Zhu, Guozhen ; Guo, Congying</creatorcontrib><description>Recently, aligning users among different social networks has received significant attention. However, most of the existing studies do not consider users' behavior information during the aligning procedure and thus still suffer from poor learning performance. In fact, we observe that social network alignment and user behavior analysis can benefit from each other. Motivated by such an observation, we propose to jointly study the social network alignment and user behavior analysis problem in this paper. We design a novel framework named BANANA-RGB. In this framework, to capture users' multi-scale behavior information in each social network, we train a variant of the hierarchical periodic memory network with personalized memorization. To leverage behavior analysis for social network alignment, we design a tensor fusion network-based alignment component to improve the performance. To further leverage social network alignment for behavior analysis, we design a gating-based cross-network behavior fusion component to integrate users' behavior information in different social networks based on the alignment result. We iteratively train the above two components to make the two tasks benefit from each other. Extensive experiments on real-world datasets demonstrate that our proposed approach outperforms the state-of-the-art methods.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3197985</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alignment ; behavior analysis ; Behavioral sciences ; Correlation ; Data mining ; Performance enhancement ; Predictive analytics ; Social network alignment ; Social networking (online) ; Social networks ; Task analysis ; Tensors ; User behavior</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-07, Vol.35 (7), p.7590-7607</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-32c0b88a92e05667d576de1b58be5f5a43c710f2875dd435ed18928c3250fd703</citedby><cites>FETCH-LOGICAL-c293t-32c0b88a92e05667d576de1b58be5f5a43c710f2875dd435ed18928c3250fd703</cites><orcidid>0000-0003-1234-0515 ; 0000-0003-4266-7527 ; 0000-0003-4562-2279 ; 0000-0002-3242-150X ; 0000-0002-2111-7617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9854153$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Zhang, Zhongbao</creatorcontrib><creatorcontrib>Ren, Fuxin</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Su, Sen</creatorcontrib><creatorcontrib>Yan, Yang</creatorcontrib><creatorcontrib>Wei, Qian</creatorcontrib><creatorcontrib>Sun, Li</creatorcontrib><creatorcontrib>Zhu, Guozhen</creatorcontrib><creatorcontrib>Guo, Congying</creatorcontrib><title>When Behavior Analysis Meets Social Network Alignment</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Recently, aligning users among different social networks has received significant attention. However, most of the existing studies do not consider users' behavior information during the aligning procedure and thus still suffer from poor learning performance. In fact, we observe that social network alignment and user behavior analysis can benefit from each other. Motivated by such an observation, we propose to jointly study the social network alignment and user behavior analysis problem in this paper. We design a novel framework named BANANA-RGB. In this framework, to capture users' multi-scale behavior information in each social network, we train a variant of the hierarchical periodic memory network with personalized memorization. To leverage behavior analysis for social network alignment, we design a tensor fusion network-based alignment component to improve the performance. To further leverage social network alignment for behavior analysis, we design a gating-based cross-network behavior fusion component to integrate users' behavior information in different social networks based on the alignment result. We iteratively train the above two components to make the two tasks benefit from each other. Extensive experiments on real-world datasets demonstrate that our proposed approach outperforms the state-of-the-art methods.</description><subject>Alignment</subject><subject>behavior analysis</subject><subject>Behavioral sciences</subject><subject>Correlation</subject><subject>Data mining</subject><subject>Performance enhancement</subject><subject>Predictive analytics</subject><subject>Social network alignment</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>Task analysis</subject><subject>Tensors</subject><subject>User behavior</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOwzAMhiMEEmPwAIhLJc4ddtI0yXGMDRADDgxxjLLWZR1dO5IOtLen0yZOtuTvt-yPsUuEASKYm9nT3XjAgfOBQKOMlkesh1LqmKPB466HBONEJOqUnYWwBACtNPaY_FhQHd3Swv2UjY-Gtau2oQzRM1EborcmK10VvVD72_ivaFiVn_WK6vacnRSuCnRxqH32PhnPRg_x9PX-cTScxhk3oo0Fz2CutTOcQKapyqVKc8K51HOShXSJyBRCwbWSeZ4ISTlqw3UmuIQiVyD67Hq_d-2b7w2F1i6bje9uDJZr3n0qIMWOwj2V-SYET4Vd-3Ll_NYi2J0du7Njd3bswU6XudpnSiL657tJglKIP81qXpM</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Zhang, Zhongbao</creator><creator>Ren, Fuxin</creator><creator>Zhang, Jiawei</creator><creator>Su, Sen</creator><creator>Yan, Yang</creator><creator>Wei, Qian</creator><creator>Sun, Li</creator><creator>Zhu, Guozhen</creator><creator>Guo, Congying</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1234-0515</orcidid><orcidid>https://orcid.org/0000-0003-4266-7527</orcidid><orcidid>https://orcid.org/0000-0003-4562-2279</orcidid><orcidid>https://orcid.org/0000-0002-3242-150X</orcidid><orcidid>https://orcid.org/0000-0002-2111-7617</orcidid></search><sort><creationdate>20230701</creationdate><title>When Behavior Analysis Meets Social Network Alignment</title><author>Zhang, Zhongbao ; Ren, Fuxin ; Zhang, Jiawei ; Su, Sen ; Yan, Yang ; Wei, Qian ; Sun, Li ; Zhu, Guozhen ; Guo, Congying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-32c0b88a92e05667d576de1b58be5f5a43c710f2875dd435ed18928c3250fd703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alignment</topic><topic>behavior analysis</topic><topic>Behavioral sciences</topic><topic>Correlation</topic><topic>Data mining</topic><topic>Performance enhancement</topic><topic>Predictive analytics</topic><topic>Social network alignment</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>Task analysis</topic><topic>Tensors</topic><topic>User behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhongbao</creatorcontrib><creatorcontrib>Ren, Fuxin</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Su, Sen</creatorcontrib><creatorcontrib>Yan, Yang</creatorcontrib><creatorcontrib>Wei, Qian</creatorcontrib><creatorcontrib>Sun, Li</creatorcontrib><creatorcontrib>Zhu, Guozhen</creatorcontrib><creatorcontrib>Guo, Congying</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhongbao</au><au>Ren, Fuxin</au><au>Zhang, Jiawei</au><au>Su, Sen</au><au>Yan, Yang</au><au>Wei, Qian</au><au>Sun, Li</au><au>Zhu, Guozhen</au><au>Guo, Congying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>When Behavior Analysis Meets Social Network Alignment</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>35</volume><issue>7</issue><spage>7590</spage><epage>7607</epage><pages>7590-7607</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Recently, aligning users among different social networks has received significant attention. However, most of the existing studies do not consider users' behavior information during the aligning procedure and thus still suffer from poor learning performance. In fact, we observe that social network alignment and user behavior analysis can benefit from each other. Motivated by such an observation, we propose to jointly study the social network alignment and user behavior analysis problem in this paper. We design a novel framework named BANANA-RGB. In this framework, to capture users' multi-scale behavior information in each social network, we train a variant of the hierarchical periodic memory network with personalized memorization. To leverage behavior analysis for social network alignment, we design a tensor fusion network-based alignment component to improve the performance. To further leverage social network alignment for behavior analysis, we design a gating-based cross-network behavior fusion component to integrate users' behavior information in different social networks based on the alignment result. We iteratively train the above two components to make the two tasks benefit from each other. Extensive experiments on real-world datasets demonstrate that our proposed approach outperforms the state-of-the-art methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3197985</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1234-0515</orcidid><orcidid>https://orcid.org/0000-0003-4266-7527</orcidid><orcidid>https://orcid.org/0000-0003-4562-2279</orcidid><orcidid>https://orcid.org/0000-0002-3242-150X</orcidid><orcidid>https://orcid.org/0000-0002-2111-7617</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2023-07, Vol.35 (7), p.7590-7607
issn 1041-4347
1558-2191
language eng
recordid cdi_crossref_primary_10_1109_TKDE_2022_3197985
source IEEE Electronic Library (IEL) Journals
subjects Alignment
behavior analysis
Behavioral sciences
Correlation
Data mining
Performance enhancement
Predictive analytics
Social network alignment
Social networking (online)
Social networks
Task analysis
Tensors
User behavior
title When Behavior Analysis Meets Social Network Alignment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A43%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=When%20Behavior%20Analysis%20Meets%20Social%20Network%20Alignment&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Zhang,%20Zhongbao&rft.date=2023-07-01&rft.volume=35&rft.issue=7&rft.spage=7590&rft.epage=7607&rft.pages=7590-7607&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3197985&rft_dat=%3Cproquest_cross%3E2823193061%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-32c0b88a92e05667d576de1b58be5f5a43c710f2875dd435ed18928c3250fd703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2823193061&rft_id=info:pmid/&rft_ieee_id=9854153&rfr_iscdi=true