Loading…

Partial Label Feature Selection: An Adaptive Approach

As an emerging weakly supervised learning framework, partial label learning aims to induce a multi-class classifier from ambiguous supervision information where each training example is associated with a set of candidate labels, among which only one is the true label. Traditional feature selection m...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering 2024-08, Vol.36 (8), p.4178-4191
Main Authors: Zhang, Zan, Yao, Jialu, Liu, Lin, Li, Jiuyong, Li, Lei, Wu, Xindong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c246t-c2d8fabb8de7fc7992cad48be64cb07a249b6249da794b2901abe5bd459a20af3
container_end_page 4191
container_issue 8
container_start_page 4178
container_title IEEE transactions on knowledge and data engineering
container_volume 36
creator Zhang, Zan
Yao, Jialu
Liu, Lin
Li, Jiuyong
Li, Lei
Wu, Xindong
description As an emerging weakly supervised learning framework, partial label learning aims to induce a multi-class classifier from ambiguous supervision information where each training example is associated with a set of candidate labels, among which only one is the true label. Traditional feature selection methods, either for single label and multiple label problems, are not applicable to partial label learning as the ambiguous information contained in the label space obfuscates the importance of features and misleads the selection process. This makes the selection of a proper feature subset from partial label examples particularly challenging, and therefore has rarely been investigated. In this paper, we propose a novel feature selection algorithm for partial label learning, named PLFS, which considers not only the relationships between features and labels, but also exploits the relationships between instances to select the most informative and important features to enhance the performance of partial label learning. PLFS constructs an adaptive weighted graph to exploit the similarity information among instances, differentiate the label space and weight the feature space, which leads to the selection of a proper feature subset. Extensive experiments over a broad range of benchmark data sets clearly validate the effectiveness of our proposed feature selection approach.
doi_str_mv 10.1109/TKDE.2024.3365691
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2024_3365691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10433758</ieee_id><sourcerecordid>3078078619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-c2d8fabb8de7fc7992cad48be64cb07a249b6249da794b2901abe5bd459a20af3</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsFY_gOAh4Dl1_2Z3vYXaqlhQsJ6X2c0EU2ITN6ngt3dLexCGN3N4M2_4EXLN6Iwxau_WLw-LGadczoQoVGHZCZkwpUzOmWWnaaaS5VJIfU4uhmFDKTXasAlRbxDHBtpsBR7bbIkw7iJm79hiGJtue5-V26ysoB-bH8zKvo8dhM9LclZDO-DVsU_Jx3Kxnj_lq9fH53m5ygOXxZi0MjV4byrUddDW8gCVNB4LGTzVwKX1RZIKtJWeW8rSE8pXUlngFGoxJbeHuyn2e4fD6DbdLm5TpBNUm1QFs8nFDq4Qu2GIWLs-Nl8Qfx2jbk_H7em4PR13pJN2bg47DSL-80shtDLiD7ZSX-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078078619</pqid></control><display><type>article</type><title>Partial Label Feature Selection: An Adaptive Approach</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhang, Zan ; Yao, Jialu ; Liu, Lin ; Li, Jiuyong ; Li, Lei ; Wu, Xindong</creator><creatorcontrib>Zhang, Zan ; Yao, Jialu ; Liu, Lin ; Li, Jiuyong ; Li, Lei ; Wu, Xindong</creatorcontrib><description>As an emerging weakly supervised learning framework, partial label learning aims to induce a multi-class classifier from ambiguous supervision information where each training example is associated with a set of candidate labels, among which only one is the true label. Traditional feature selection methods, either for single label and multiple label problems, are not applicable to partial label learning as the ambiguous information contained in the label space obfuscates the importance of features and misleads the selection process. This makes the selection of a proper feature subset from partial label examples particularly challenging, and therefore has rarely been investigated. In this paper, we propose a novel feature selection algorithm for partial label learning, named PLFS, which considers not only the relationships between features and labels, but also exploits the relationships between instances to select the most informative and important features to enhance the performance of partial label learning. PLFS constructs an adaptive weighted graph to exploit the similarity information among instances, differentiate the label space and weight the feature space, which leads to the selection of a proper feature subset. Extensive experiments over a broad range of benchmark data sets clearly validate the effectiveness of our proposed feature selection approach.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2024.3365691</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Big Data ; Classification algorithms ; Feature extraction ; Feature selection ; Knowledge engineering ; Labeling ; Labels ; Machine learning ; partial label learning ; Supervised learning ; Training ; weakly supervised learning</subject><ispartof>IEEE transactions on knowledge and data engineering, 2024-08, Vol.36 (8), p.4178-4191</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-c2d8fabb8de7fc7992cad48be64cb07a249b6249da794b2901abe5bd459a20af3</cites><orcidid>0000-0002-6383-1683 ; 0000-0002-5374-7293 ; 0000-0002-3787-4583 ; 0000-0003-2843-5738 ; 0000-0003-2396-1704 ; 0000-0002-9023-1878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10433758$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhang, Zan</creatorcontrib><creatorcontrib>Yao, Jialu</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Li, Jiuyong</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Wu, Xindong</creatorcontrib><title>Partial Label Feature Selection: An Adaptive Approach</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>As an emerging weakly supervised learning framework, partial label learning aims to induce a multi-class classifier from ambiguous supervision information where each training example is associated with a set of candidate labels, among which only one is the true label. Traditional feature selection methods, either for single label and multiple label problems, are not applicable to partial label learning as the ambiguous information contained in the label space obfuscates the importance of features and misleads the selection process. This makes the selection of a proper feature subset from partial label examples particularly challenging, and therefore has rarely been investigated. In this paper, we propose a novel feature selection algorithm for partial label learning, named PLFS, which considers not only the relationships between features and labels, but also exploits the relationships between instances to select the most informative and important features to enhance the performance of partial label learning. PLFS constructs an adaptive weighted graph to exploit the similarity information among instances, differentiate the label space and weight the feature space, which leads to the selection of a proper feature subset. Extensive experiments over a broad range of benchmark data sets clearly validate the effectiveness of our proposed feature selection approach.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Classification algorithms</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>Knowledge engineering</subject><subject>Labeling</subject><subject>Labels</subject><subject>Machine learning</subject><subject>partial label learning</subject><subject>Supervised learning</subject><subject>Training</subject><subject>weakly supervised learning</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE9Lw0AQxRdRsFY_gOAh4Dl1_2Z3vYXaqlhQsJ6X2c0EU2ITN6ngt3dLexCGN3N4M2_4EXLN6Iwxau_WLw-LGadczoQoVGHZCZkwpUzOmWWnaaaS5VJIfU4uhmFDKTXasAlRbxDHBtpsBR7bbIkw7iJm79hiGJtue5-V26ysoB-bH8zKvo8dhM9LclZDO-DVsU_Jx3Kxnj_lq9fH53m5ygOXxZi0MjV4byrUddDW8gCVNB4LGTzVwKX1RZIKtJWeW8rSE8pXUlngFGoxJbeHuyn2e4fD6DbdLm5TpBNUm1QFs8nFDq4Qu2GIWLs-Nl8Qfx2jbk_H7em4PR13pJN2bg47DSL-80shtDLiD7ZSX-E</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Zhang, Zan</creator><creator>Yao, Jialu</creator><creator>Liu, Lin</creator><creator>Li, Jiuyong</creator><creator>Li, Lei</creator><creator>Wu, Xindong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6383-1683</orcidid><orcidid>https://orcid.org/0000-0002-5374-7293</orcidid><orcidid>https://orcid.org/0000-0002-3787-4583</orcidid><orcidid>https://orcid.org/0000-0003-2843-5738</orcidid><orcidid>https://orcid.org/0000-0003-2396-1704</orcidid><orcidid>https://orcid.org/0000-0002-9023-1878</orcidid></search><sort><creationdate>20240801</creationdate><title>Partial Label Feature Selection: An Adaptive Approach</title><author>Zhang, Zan ; Yao, Jialu ; Liu, Lin ; Li, Jiuyong ; Li, Lei ; Wu, Xindong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-c2d8fabb8de7fc7992cad48be64cb07a249b6249da794b2901abe5bd459a20af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Classification algorithms</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>Knowledge engineering</topic><topic>Labeling</topic><topic>Labels</topic><topic>Machine learning</topic><topic>partial label learning</topic><topic>Supervised learning</topic><topic>Training</topic><topic>weakly supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zan</creatorcontrib><creatorcontrib>Yao, Jialu</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Li, Jiuyong</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Wu, Xindong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zan</au><au>Yao, Jialu</au><au>Liu, Lin</au><au>Li, Jiuyong</au><au>Li, Lei</au><au>Wu, Xindong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial Label Feature Selection: An Adaptive Approach</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>36</volume><issue>8</issue><spage>4178</spage><epage>4191</epage><pages>4178-4191</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>As an emerging weakly supervised learning framework, partial label learning aims to induce a multi-class classifier from ambiguous supervision information where each training example is associated with a set of candidate labels, among which only one is the true label. Traditional feature selection methods, either for single label and multiple label problems, are not applicable to partial label learning as the ambiguous information contained in the label space obfuscates the importance of features and misleads the selection process. This makes the selection of a proper feature subset from partial label examples particularly challenging, and therefore has rarely been investigated. In this paper, we propose a novel feature selection algorithm for partial label learning, named PLFS, which considers not only the relationships between features and labels, but also exploits the relationships between instances to select the most informative and important features to enhance the performance of partial label learning. PLFS constructs an adaptive weighted graph to exploit the similarity information among instances, differentiate the label space and weight the feature space, which leads to the selection of a proper feature subset. Extensive experiments over a broad range of benchmark data sets clearly validate the effectiveness of our proposed feature selection approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2024.3365691</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6383-1683</orcidid><orcidid>https://orcid.org/0000-0002-5374-7293</orcidid><orcidid>https://orcid.org/0000-0002-3787-4583</orcidid><orcidid>https://orcid.org/0000-0003-2843-5738</orcidid><orcidid>https://orcid.org/0000-0003-2396-1704</orcidid><orcidid>https://orcid.org/0000-0002-9023-1878</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2024-08, Vol.36 (8), p.4178-4191
issn 1041-4347
1558-2191
language eng
recordid cdi_crossref_primary_10_1109_TKDE_2024_3365691
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Big Data
Classification algorithms
Feature extraction
Feature selection
Knowledge engineering
Labeling
Labels
Machine learning
partial label learning
Supervised learning
Training
weakly supervised learning
title Partial Label Feature Selection: An Adaptive Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A28%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20Label%20Feature%20Selection:%20An%20Adaptive%20Approach&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Zhang,%20Zan&rft.date=2024-08-01&rft.volume=36&rft.issue=8&rft.spage=4178&rft.epage=4191&rft.pages=4178-4191&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2024.3365691&rft_dat=%3Cproquest_cross%3E3078078619%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-c2d8fabb8de7fc7992cad48be64cb07a249b6249da794b2901abe5bd459a20af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3078078619&rft_id=info:pmid/&rft_ieee_id=10433758&rfr_iscdi=true