Loading…
Partial Label Feature Selection: An Adaptive Approach
As an emerging weakly supervised learning framework, partial label learning aims to induce a multi-class classifier from ambiguous supervision information where each training example is associated with a set of candidate labels, among which only one is the true label. Traditional feature selection m...
Saved in:
Published in: | IEEE transactions on knowledge and data engineering 2024-08, Vol.36 (8), p.4178-4191 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c246t-c2d8fabb8de7fc7992cad48be64cb07a249b6249da794b2901abe5bd459a20af3 |
container_end_page | 4191 |
container_issue | 8 |
container_start_page | 4178 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 36 |
creator | Zhang, Zan Yao, Jialu Liu, Lin Li, Jiuyong Li, Lei Wu, Xindong |
description | As an emerging weakly supervised learning framework, partial label learning aims to induce a multi-class classifier from ambiguous supervision information where each training example is associated with a set of candidate labels, among which only one is the true label. Traditional feature selection methods, either for single label and multiple label problems, are not applicable to partial label learning as the ambiguous information contained in the label space obfuscates the importance of features and misleads the selection process. This makes the selection of a proper feature subset from partial label examples particularly challenging, and therefore has rarely been investigated. In this paper, we propose a novel feature selection algorithm for partial label learning, named PLFS, which considers not only the relationships between features and labels, but also exploits the relationships between instances to select the most informative and important features to enhance the performance of partial label learning. PLFS constructs an adaptive weighted graph to exploit the similarity information among instances, differentiate the label space and weight the feature space, which leads to the selection of a proper feature subset. Extensive experiments over a broad range of benchmark data sets clearly validate the effectiveness of our proposed feature selection approach. |
doi_str_mv | 10.1109/TKDE.2024.3365691 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2024_3365691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10433758</ieee_id><sourcerecordid>3078078619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-c2d8fabb8de7fc7992cad48be64cb07a249b6249da794b2901abe5bd459a20af3</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsFY_gOAh4Dl1_2Z3vYXaqlhQsJ6X2c0EU2ITN6ngt3dLexCGN3N4M2_4EXLN6Iwxau_WLw-LGadczoQoVGHZCZkwpUzOmWWnaaaS5VJIfU4uhmFDKTXasAlRbxDHBtpsBR7bbIkw7iJm79hiGJtue5-V26ysoB-bH8zKvo8dhM9LclZDO-DVsU_Jx3Kxnj_lq9fH53m5ygOXxZi0MjV4byrUddDW8gCVNB4LGTzVwKX1RZIKtJWeW8rSE8pXUlngFGoxJbeHuyn2e4fD6DbdLm5TpBNUm1QFs8nFDq4Qu2GIWLs-Nl8Qfx2jbk_H7em4PR13pJN2bg47DSL-80shtDLiD7ZSX-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078078619</pqid></control><display><type>article</type><title>Partial Label Feature Selection: An Adaptive Approach</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhang, Zan ; Yao, Jialu ; Liu, Lin ; Li, Jiuyong ; Li, Lei ; Wu, Xindong</creator><creatorcontrib>Zhang, Zan ; Yao, Jialu ; Liu, Lin ; Li, Jiuyong ; Li, Lei ; Wu, Xindong</creatorcontrib><description>As an emerging weakly supervised learning framework, partial label learning aims to induce a multi-class classifier from ambiguous supervision information where each training example is associated with a set of candidate labels, among which only one is the true label. Traditional feature selection methods, either for single label and multiple label problems, are not applicable to partial label learning as the ambiguous information contained in the label space obfuscates the importance of features and misleads the selection process. This makes the selection of a proper feature subset from partial label examples particularly challenging, and therefore has rarely been investigated. In this paper, we propose a novel feature selection algorithm for partial label learning, named PLFS, which considers not only the relationships between features and labels, but also exploits the relationships between instances to select the most informative and important features to enhance the performance of partial label learning. PLFS constructs an adaptive weighted graph to exploit the similarity information among instances, differentiate the label space and weight the feature space, which leads to the selection of a proper feature subset. Extensive experiments over a broad range of benchmark data sets clearly validate the effectiveness of our proposed feature selection approach.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2024.3365691</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Big Data ; Classification algorithms ; Feature extraction ; Feature selection ; Knowledge engineering ; Labeling ; Labels ; Machine learning ; partial label learning ; Supervised learning ; Training ; weakly supervised learning</subject><ispartof>IEEE transactions on knowledge and data engineering, 2024-08, Vol.36 (8), p.4178-4191</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-c2d8fabb8de7fc7992cad48be64cb07a249b6249da794b2901abe5bd459a20af3</cites><orcidid>0000-0002-6383-1683 ; 0000-0002-5374-7293 ; 0000-0002-3787-4583 ; 0000-0003-2843-5738 ; 0000-0003-2396-1704 ; 0000-0002-9023-1878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10433758$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhang, Zan</creatorcontrib><creatorcontrib>Yao, Jialu</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Li, Jiuyong</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Wu, Xindong</creatorcontrib><title>Partial Label Feature Selection: An Adaptive Approach</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>As an emerging weakly supervised learning framework, partial label learning aims to induce a multi-class classifier from ambiguous supervision information where each training example is associated with a set of candidate labels, among which only one is the true label. Traditional feature selection methods, either for single label and multiple label problems, are not applicable to partial label learning as the ambiguous information contained in the label space obfuscates the importance of features and misleads the selection process. This makes the selection of a proper feature subset from partial label examples particularly challenging, and therefore has rarely been investigated. In this paper, we propose a novel feature selection algorithm for partial label learning, named PLFS, which considers not only the relationships between features and labels, but also exploits the relationships between instances to select the most informative and important features to enhance the performance of partial label learning. PLFS constructs an adaptive weighted graph to exploit the similarity information among instances, differentiate the label space and weight the feature space, which leads to the selection of a proper feature subset. Extensive experiments over a broad range of benchmark data sets clearly validate the effectiveness of our proposed feature selection approach.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Classification algorithms</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>Knowledge engineering</subject><subject>Labeling</subject><subject>Labels</subject><subject>Machine learning</subject><subject>partial label learning</subject><subject>Supervised learning</subject><subject>Training</subject><subject>weakly supervised learning</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE9Lw0AQxRdRsFY_gOAh4Dl1_2Z3vYXaqlhQsJ6X2c0EU2ITN6ngt3dLexCGN3N4M2_4EXLN6Iwxau_WLw-LGadczoQoVGHZCZkwpUzOmWWnaaaS5VJIfU4uhmFDKTXasAlRbxDHBtpsBR7bbIkw7iJm79hiGJtue5-V26ysoB-bH8zKvo8dhM9LclZDO-DVsU_Jx3Kxnj_lq9fH53m5ygOXxZi0MjV4byrUddDW8gCVNB4LGTzVwKX1RZIKtJWeW8rSE8pXUlngFGoxJbeHuyn2e4fD6DbdLm5TpBNUm1QFs8nFDq4Qu2GIWLs-Nl8Qfx2jbk_H7em4PR13pJN2bg47DSL-80shtDLiD7ZSX-E</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Zhang, Zan</creator><creator>Yao, Jialu</creator><creator>Liu, Lin</creator><creator>Li, Jiuyong</creator><creator>Li, Lei</creator><creator>Wu, Xindong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6383-1683</orcidid><orcidid>https://orcid.org/0000-0002-5374-7293</orcidid><orcidid>https://orcid.org/0000-0002-3787-4583</orcidid><orcidid>https://orcid.org/0000-0003-2843-5738</orcidid><orcidid>https://orcid.org/0000-0003-2396-1704</orcidid><orcidid>https://orcid.org/0000-0002-9023-1878</orcidid></search><sort><creationdate>20240801</creationdate><title>Partial Label Feature Selection: An Adaptive Approach</title><author>Zhang, Zan ; Yao, Jialu ; Liu, Lin ; Li, Jiuyong ; Li, Lei ; Wu, Xindong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-c2d8fabb8de7fc7992cad48be64cb07a249b6249da794b2901abe5bd459a20af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Classification algorithms</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>Knowledge engineering</topic><topic>Labeling</topic><topic>Labels</topic><topic>Machine learning</topic><topic>partial label learning</topic><topic>Supervised learning</topic><topic>Training</topic><topic>weakly supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zan</creatorcontrib><creatorcontrib>Yao, Jialu</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Li, Jiuyong</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Wu, Xindong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zan</au><au>Yao, Jialu</au><au>Liu, Lin</au><au>Li, Jiuyong</au><au>Li, Lei</au><au>Wu, Xindong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial Label Feature Selection: An Adaptive Approach</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>36</volume><issue>8</issue><spage>4178</spage><epage>4191</epage><pages>4178-4191</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>As an emerging weakly supervised learning framework, partial label learning aims to induce a multi-class classifier from ambiguous supervision information where each training example is associated with a set of candidate labels, among which only one is the true label. Traditional feature selection methods, either for single label and multiple label problems, are not applicable to partial label learning as the ambiguous information contained in the label space obfuscates the importance of features and misleads the selection process. This makes the selection of a proper feature subset from partial label examples particularly challenging, and therefore has rarely been investigated. In this paper, we propose a novel feature selection algorithm for partial label learning, named PLFS, which considers not only the relationships between features and labels, but also exploits the relationships between instances to select the most informative and important features to enhance the performance of partial label learning. PLFS constructs an adaptive weighted graph to exploit the similarity information among instances, differentiate the label space and weight the feature space, which leads to the selection of a proper feature subset. Extensive experiments over a broad range of benchmark data sets clearly validate the effectiveness of our proposed feature selection approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2024.3365691</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6383-1683</orcidid><orcidid>https://orcid.org/0000-0002-5374-7293</orcidid><orcidid>https://orcid.org/0000-0002-3787-4583</orcidid><orcidid>https://orcid.org/0000-0003-2843-5738</orcidid><orcidid>https://orcid.org/0000-0003-2396-1704</orcidid><orcidid>https://orcid.org/0000-0002-9023-1878</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2024-08, Vol.36 (8), p.4178-4191 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TKDE_2024_3365691 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Big Data Classification algorithms Feature extraction Feature selection Knowledge engineering Labeling Labels Machine learning partial label learning Supervised learning Training weakly supervised learning |
title | Partial Label Feature Selection: An Adaptive Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A28%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20Label%20Feature%20Selection:%20An%20Adaptive%20Approach&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Zhang,%20Zan&rft.date=2024-08-01&rft.volume=36&rft.issue=8&rft.spage=4178&rft.epage=4191&rft.pages=4178-4191&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2024.3365691&rft_dat=%3Cproquest_cross%3E3078078619%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-c2d8fabb8de7fc7992cad48be64cb07a249b6249da794b2901abe5bd459a20af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3078078619&rft_id=info:pmid/&rft_ieee_id=10433758&rfr_iscdi=true |