Loading…
Efficient Link Prediction via GNN Layers Induced by Negative Sampling
Graph neural networks (GNNs) for link prediction can loosely be divided into two broad categories. First, node-wise architectures pre-compute individual embeddings for each node that are later combined by a simple decoder to make predictions. While extremely efficient at inference time, model expres...
Saved in:
Published in: | IEEE transactions on knowledge and data engineering 2025-01, Vol.37 (1), p.253-264 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c148t-f225317b84650d0ab0a10bfc636fb8fd7a787633bde45ad10cec5e139967a1ca3 |
container_end_page | 264 |
container_issue | 1 |
container_start_page | 253 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 37 |
creator | Wang, Yuxin Hu, Xiannian Gan, Quan Huang, Xuanjing Qiu, Xipeng Wipf, David |
description | Graph neural networks (GNNs) for link prediction can loosely be divided into two broad categories. First, node-wise architectures pre-compute individual embeddings for each node that are later combined by a simple decoder to make predictions. While extremely efficient at inference time, model expressiveness is limited such that isomorphic nodes contributing to candidate edges may not be distinguishable, compromising accuracy. In contrast, edge-wise methods rely on the formation of edge-specific subgraph embeddings to enrich the representation of pair-wise relationships, disambiguating isomorphic nodes to improve accuracy, but with increased model complexity. To better navigate this trade-off, we propose a novel GNN architecture whereby the forward pass explicitly depends on both positive (as is typical) and negative (unique to our approach) edges to inform more flexible, yet still cheap node-wise embeddings. This is achieved by recasting the embeddings themselves as minimizers of a forward-pass-specific energy function that favors separation of positive and negative samples. Notably, this energy is distinct from the actual training loss shared by most existing link prediction models, where contrastive pairs only influence the backward pass . As demonstrated by extensive empirical evaluations, the resulting architecture retains the inference speed of node-wise models, while producing competitive accuracy with edge-wise alternatives. |
doi_str_mv | 10.1109/TKDE.2024.3481015 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2024_3481015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10716808</ieee_id><sourcerecordid>10_1109_TKDE_2024_3481015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-f225317b84650d0ab0a10bfc636fb8fd7a787633bde45ad10cec5e139967a1ca3</originalsourceid><addsrcrecordid>eNpNkMFOwzAQRC0EEqXwAUgc_AMpu7EdO0dUQqmIAhLlHDn2ujK0aZWESv17WrUHTjOHeXN4jN0jTBAhf1y8PReTFFI5EdIgoLpgI1TKJCnmeHnoIDGRQuprdtP33wBgtMERK4oQoovUDryM7Q__6MhHN8RNy3fR8llV8dLuqev5vPW_jjxv9ryipR3ijvinXW9XsV3esqtgVz3dnXPMvl6KxfQ1Kd9n8-lTmTiUZkhCmiqBujEyU-DBNmARmuAykYXGBK-tNjoTovEklfUIjpwiFHmeaYvOijHD06_rNn3fUai3XVzbbl8j1EcP9dFDffRQnz0cmIcTE4no315jZsCIP_HOWRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient Link Prediction via GNN Layers Induced by Negative Sampling</title><source>IEEE Xplore (Online service)</source><creator>Wang, Yuxin ; Hu, Xiannian ; Gan, Quan ; Huang, Xuanjing ; Qiu, Xipeng ; Wipf, David</creator><creatorcontrib>Wang, Yuxin ; Hu, Xiannian ; Gan, Quan ; Huang, Xuanjing ; Qiu, Xipeng ; Wipf, David</creatorcontrib><description>Graph neural networks (GNNs) for link prediction can loosely be divided into two broad categories. First, node-wise architectures pre-compute individual embeddings for each node that are later combined by a simple decoder to make predictions. While extremely efficient at inference time, model expressiveness is limited such that isomorphic nodes contributing to candidate edges may not be distinguishable, compromising accuracy. In contrast, edge-wise methods rely on the formation of edge-specific subgraph embeddings to enrich the representation of pair-wise relationships, disambiguating isomorphic nodes to improve accuracy, but with increased model complexity. To better navigate this trade-off, we propose a novel GNN architecture whereby the forward pass explicitly depends on both positive (as is typical) and negative (unique to our approach) edges to inform more flexible, yet still cheap node-wise embeddings. This is achieved by recasting the embeddings themselves as minimizers of a forward-pass-specific energy function that favors separation of positive and negative samples. Notably, this energy is distinct from the actual training loss shared by most existing link prediction models, where contrastive pairs only influence the backward pass . As demonstrated by extensive empirical evaluations, the resulting architecture retains the inference speed of node-wise models, while producing competitive accuracy with edge-wise alternatives.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2024.3481015</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Artificial intelligence (AI) ; Computational modeling ; Computer architecture ; Convergence ; Costs ; Decoding ; Graph neural networks ; graph neural networks (GNN) ; link prediction ; machine learning ; Optimization ; Predictive models ; Training</subject><ispartof>IEEE transactions on knowledge and data engineering, 2025-01, Vol.37 (1), p.253-264</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-f225317b84650d0ab0a10bfc636fb8fd7a787633bde45ad10cec5e139967a1ca3</cites><orcidid>0000-0001-7163-5247 ; 0000-0001-9197-9426 ; 0009-0001-3296-2867 ; 0009-0002-0986-457X ; 0000-0002-2768-4540 ; 0000-0001-6551-000X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10716808$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Wang, Yuxin</creatorcontrib><creatorcontrib>Hu, Xiannian</creatorcontrib><creatorcontrib>Gan, Quan</creatorcontrib><creatorcontrib>Huang, Xuanjing</creatorcontrib><creatorcontrib>Qiu, Xipeng</creatorcontrib><creatorcontrib>Wipf, David</creatorcontrib><title>Efficient Link Prediction via GNN Layers Induced by Negative Sampling</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Graph neural networks (GNNs) for link prediction can loosely be divided into two broad categories. First, node-wise architectures pre-compute individual embeddings for each node that are later combined by a simple decoder to make predictions. While extremely efficient at inference time, model expressiveness is limited such that isomorphic nodes contributing to candidate edges may not be distinguishable, compromising accuracy. In contrast, edge-wise methods rely on the formation of edge-specific subgraph embeddings to enrich the representation of pair-wise relationships, disambiguating isomorphic nodes to improve accuracy, but with increased model complexity. To better navigate this trade-off, we propose a novel GNN architecture whereby the forward pass explicitly depends on both positive (as is typical) and negative (unique to our approach) edges to inform more flexible, yet still cheap node-wise embeddings. This is achieved by recasting the embeddings themselves as minimizers of a forward-pass-specific energy function that favors separation of positive and negative samples. Notably, this energy is distinct from the actual training loss shared by most existing link prediction models, where contrastive pairs only influence the backward pass . As demonstrated by extensive empirical evaluations, the resulting architecture retains the inference speed of node-wise models, while producing competitive accuracy with edge-wise alternatives.</description><subject>Accuracy</subject><subject>Artificial intelligence (AI)</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Convergence</subject><subject>Costs</subject><subject>Decoding</subject><subject>Graph neural networks</subject><subject>graph neural networks (GNN)</subject><subject>link prediction</subject><subject>machine learning</subject><subject>Optimization</subject><subject>Predictive models</subject><subject>Training</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkMFOwzAQRC0EEqXwAUgc_AMpu7EdO0dUQqmIAhLlHDn2ujK0aZWESv17WrUHTjOHeXN4jN0jTBAhf1y8PReTFFI5EdIgoLpgI1TKJCnmeHnoIDGRQuprdtP33wBgtMERK4oQoovUDryM7Q__6MhHN8RNy3fR8llV8dLuqev5vPW_jjxv9ryipR3ijvinXW9XsV3esqtgVz3dnXPMvl6KxfQ1Kd9n8-lTmTiUZkhCmiqBujEyU-DBNmARmuAykYXGBK-tNjoTovEklfUIjpwiFHmeaYvOijHD06_rNn3fUai3XVzbbl8j1EcP9dFDffRQnz0cmIcTE4no315jZsCIP_HOWRA</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Wang, Yuxin</creator><creator>Hu, Xiannian</creator><creator>Gan, Quan</creator><creator>Huang, Xuanjing</creator><creator>Qiu, Xipeng</creator><creator>Wipf, David</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7163-5247</orcidid><orcidid>https://orcid.org/0000-0001-9197-9426</orcidid><orcidid>https://orcid.org/0009-0001-3296-2867</orcidid><orcidid>https://orcid.org/0009-0002-0986-457X</orcidid><orcidid>https://orcid.org/0000-0002-2768-4540</orcidid><orcidid>https://orcid.org/0000-0001-6551-000X</orcidid></search><sort><creationdate>202501</creationdate><title>Efficient Link Prediction via GNN Layers Induced by Negative Sampling</title><author>Wang, Yuxin ; Hu, Xiannian ; Gan, Quan ; Huang, Xuanjing ; Qiu, Xipeng ; Wipf, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-f225317b84650d0ab0a10bfc636fb8fd7a787633bde45ad10cec5e139967a1ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Artificial intelligence (AI)</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Convergence</topic><topic>Costs</topic><topic>Decoding</topic><topic>Graph neural networks</topic><topic>graph neural networks (GNN)</topic><topic>link prediction</topic><topic>machine learning</topic><topic>Optimization</topic><topic>Predictive models</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuxin</creatorcontrib><creatorcontrib>Hu, Xiannian</creatorcontrib><creatorcontrib>Gan, Quan</creatorcontrib><creatorcontrib>Huang, Xuanjing</creatorcontrib><creatorcontrib>Qiu, Xipeng</creatorcontrib><creatorcontrib>Wipf, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuxin</au><au>Hu, Xiannian</au><au>Gan, Quan</au><au>Huang, Xuanjing</au><au>Qiu, Xipeng</au><au>Wipf, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Link Prediction via GNN Layers Induced by Negative Sampling</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2025-01</date><risdate>2025</risdate><volume>37</volume><issue>1</issue><spage>253</spage><epage>264</epage><pages>253-264</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Graph neural networks (GNNs) for link prediction can loosely be divided into two broad categories. First, node-wise architectures pre-compute individual embeddings for each node that are later combined by a simple decoder to make predictions. While extremely efficient at inference time, model expressiveness is limited such that isomorphic nodes contributing to candidate edges may not be distinguishable, compromising accuracy. In contrast, edge-wise methods rely on the formation of edge-specific subgraph embeddings to enrich the representation of pair-wise relationships, disambiguating isomorphic nodes to improve accuracy, but with increased model complexity. To better navigate this trade-off, we propose a novel GNN architecture whereby the forward pass explicitly depends on both positive (as is typical) and negative (unique to our approach) edges to inform more flexible, yet still cheap node-wise embeddings. This is achieved by recasting the embeddings themselves as minimizers of a forward-pass-specific energy function that favors separation of positive and negative samples. Notably, this energy is distinct from the actual training loss shared by most existing link prediction models, where contrastive pairs only influence the backward pass . As demonstrated by extensive empirical evaluations, the resulting architecture retains the inference speed of node-wise models, while producing competitive accuracy with edge-wise alternatives.</abstract><pub>IEEE</pub><doi>10.1109/TKDE.2024.3481015</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7163-5247</orcidid><orcidid>https://orcid.org/0000-0001-9197-9426</orcidid><orcidid>https://orcid.org/0009-0001-3296-2867</orcidid><orcidid>https://orcid.org/0009-0002-0986-457X</orcidid><orcidid>https://orcid.org/0000-0002-2768-4540</orcidid><orcidid>https://orcid.org/0000-0001-6551-000X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2025-01, Vol.37 (1), p.253-264 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TKDE_2024_3481015 |
source | IEEE Xplore (Online service) |
subjects | Accuracy Artificial intelligence (AI) Computational modeling Computer architecture Convergence Costs Decoding Graph neural networks graph neural networks (GNN) link prediction machine learning Optimization Predictive models Training |
title | Efficient Link Prediction via GNN Layers Induced by Negative Sampling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A12%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Link%20Prediction%20via%20GNN%20Layers%20Induced%20by%20Negative%20Sampling&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Wang,%20Yuxin&rft.date=2025-01&rft.volume=37&rft.issue=1&rft.spage=253&rft.epage=264&rft.pages=253-264&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2024.3481015&rft_dat=%3Ccrossref_ieee_%3E10_1109_TKDE_2024_3481015%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c148t-f225317b84650d0ab0a10bfc636fb8fd7a787633bde45ad10cec5e139967a1ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10716808&rfr_iscdi=true |