Loading…

Eddy current damping due to a linear periodic array of magnetic poles

Eddy currents induced in a conductor moving in a magnetic field produce a retarding force proportional to the heat generated in the material. This principle is utilized in the design of magnetic damping or "braking" systems for various applications. The problem considered here is that of a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on magnetics 1984-01, Vol.20 (1), p.149-155
Main Author: Perry, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c323t-e2c6a4170b45541bb496014db44902df3e976ee8f19015454ac57747044203463
cites cdi_FETCH-LOGICAL-c323t-e2c6a4170b45541bb496014db44902df3e976ee8f19015454ac57747044203463
container_end_page 155
container_issue 1
container_start_page 149
container_title IEEE transactions on magnetics
container_volume 20
creator Perry, M.
description Eddy currents induced in a conductor moving in a magnetic field produce a retarding force proportional to the heat generated in the material. This principle is utilized in the design of magnetic damping or "braking" systems for various applications. The problem considered here is that of a conducting sheet adjacent to a periodic array of magnetic poles. Quasistatic magnetic field solutions are derived for a sheet of arbitrary permeability and thickness moving uniformly at a fixed distance from the poles. The fields inside and outside the conducting sheet are computed over the complete range of dynamic conditions in terms of a relative magnetic penetration length. The field solutions are then employed to calculate the induced current density in the case where the conductor thickness is large in comparison with the axial pole length. The resulting braking power is computed for the purpose of establishing design principles for effective damping. The derived results are applied to two possible situations: a "high reluctance" magnetic circuit which utilizes a nonpermeable conducting sheet, and a "low reluctance" circuit which requires a highly permeable conductor. Differences in these two approaches are analyzed with respect to braking power and preferred type of permanent magnets for optimum performance.
doi_str_mv 10.1109/TMAG.1984.1063005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_1984_1063005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1063005</ieee_id><sourcerecordid>28258443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-e2c6a4170b45541bb496014db44902df3e976ee8f19015454ac57747044203463</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMouH78APGSg3jrmjSTtDkuy7oKK17Wc0jT6RLpl0l72H9vly7iaZjheV-Gh5AHzpacM_2y_1htl1znsORMCcbkBVlwDTxhTOlLsmCM54kGBdfkJsbvaQXJ2YJsNmV5pG4MAduBlrbpfXug5Yh06KiltW_RBtpj8F3pHbUh2CPtKtrYQ4vDdOm7GuMduapsHfH-PG_J1-tmv35Ldp_b9_VqlziRiiHB1CkLPGMFSAm8KECr6ZGyANAsLSuBOlOIecU14xIkWCezDDIGkDIBStyS57m3D93PiHEwjY8O69q22I3RpHkqcwAxgXwGXehiDFiZPvjGhqPhzJyEmZMwcxJmzsKmzNO53EZn6yrY1vn4F9RKy1TAhD3OmEfEf7VzyS9r13Ft</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28258443</pqid></control><display><type>article</type><title>Eddy current damping due to a linear periodic array of magnetic poles</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Perry, M.</creator><creatorcontrib>Perry, M.</creatorcontrib><description>Eddy currents induced in a conductor moving in a magnetic field produce a retarding force proportional to the heat generated in the material. This principle is utilized in the design of magnetic damping or "braking" systems for various applications. The problem considered here is that of a conducting sheet adjacent to a periodic array of magnetic poles. Quasistatic magnetic field solutions are derived for a sheet of arbitrary permeability and thickness moving uniformly at a fixed distance from the poles. The fields inside and outside the conducting sheet are computed over the complete range of dynamic conditions in terms of a relative magnetic penetration length. The field solutions are then employed to calculate the induced current density in the case where the conductor thickness is large in comparison with the axial pole length. The resulting braking power is computed for the purpose of establishing design principles for effective damping. The derived results are applied to two possible situations: a "high reluctance" magnetic circuit which utilizes a nonpermeable conducting sheet, and a "low reluctance" circuit which requires a highly permeable conductor. Differences in these two approaches are analyzed with respect to braking power and preferred type of permanent magnets for optimum performance.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.1984.1063005</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Classical and quantum physics: mechanics and fields ; Classical electromagnetism, maxwell equations ; Classical field theories ; Conducting materials ; Conductors ; Damping ; Dynamic range ; Eddy currents ; Exact sciences and technology ; Magnetic circuits ; Magnetic fields ; Magnetic materials ; Permeability ; Physics ; Sheet materials</subject><ispartof>IEEE transactions on magnetics, 1984-01, Vol.20 (1), p.149-155</ispartof><rights>1984 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-e2c6a4170b45541bb496014db44902df3e976ee8f19015454ac57747044203463</citedby><cites>FETCH-LOGICAL-c323t-e2c6a4170b45541bb496014db44902df3e976ee8f19015454ac57747044203463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1063005$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9695234$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Perry, M.</creatorcontrib><title>Eddy current damping due to a linear periodic array of magnetic poles</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Eddy currents induced in a conductor moving in a magnetic field produce a retarding force proportional to the heat generated in the material. This principle is utilized in the design of magnetic damping or "braking" systems for various applications. The problem considered here is that of a conducting sheet adjacent to a periodic array of magnetic poles. Quasistatic magnetic field solutions are derived for a sheet of arbitrary permeability and thickness moving uniformly at a fixed distance from the poles. The fields inside and outside the conducting sheet are computed over the complete range of dynamic conditions in terms of a relative magnetic penetration length. The field solutions are then employed to calculate the induced current density in the case where the conductor thickness is large in comparison with the axial pole length. The resulting braking power is computed for the purpose of establishing design principles for effective damping. The derived results are applied to two possible situations: a "high reluctance" magnetic circuit which utilizes a nonpermeable conducting sheet, and a "low reluctance" circuit which requires a highly permeable conductor. Differences in these two approaches are analyzed with respect to braking power and preferred type of permanent magnets for optimum performance.</description><subject>Classical and quantum physics: mechanics and fields</subject><subject>Classical electromagnetism, maxwell equations</subject><subject>Classical field theories</subject><subject>Conducting materials</subject><subject>Conductors</subject><subject>Damping</subject><subject>Dynamic range</subject><subject>Eddy currents</subject><subject>Exact sciences and technology</subject><subject>Magnetic circuits</subject><subject>Magnetic fields</subject><subject>Magnetic materials</subject><subject>Permeability</subject><subject>Physics</subject><subject>Sheet materials</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LxDAQhoMouH78APGSg3jrmjSTtDkuy7oKK17Wc0jT6RLpl0l72H9vly7iaZjheV-Gh5AHzpacM_2y_1htl1znsORMCcbkBVlwDTxhTOlLsmCM54kGBdfkJsbvaQXJ2YJsNmV5pG4MAduBlrbpfXug5Yh06KiltW_RBtpj8F3pHbUh2CPtKtrYQ4vDdOm7GuMduapsHfH-PG_J1-tmv35Ldp_b9_VqlziRiiHB1CkLPGMFSAm8KECr6ZGyANAsLSuBOlOIecU14xIkWCezDDIGkDIBStyS57m3D93PiHEwjY8O69q22I3RpHkqcwAxgXwGXehiDFiZPvjGhqPhzJyEmZMwcxJmzsKmzNO53EZn6yrY1vn4F9RKy1TAhD3OmEfEf7VzyS9r13Ft</recordid><startdate>198401</startdate><enddate>198401</enddate><creator>Perry, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>198401</creationdate><title>Eddy current damping due to a linear periodic array of magnetic poles</title><author>Perry, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-e2c6a4170b45541bb496014db44902df3e976ee8f19015454ac57747044203463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Classical and quantum physics: mechanics and fields</topic><topic>Classical electromagnetism, maxwell equations</topic><topic>Classical field theories</topic><topic>Conducting materials</topic><topic>Conductors</topic><topic>Damping</topic><topic>Dynamic range</topic><topic>Eddy currents</topic><topic>Exact sciences and technology</topic><topic>Magnetic circuits</topic><topic>Magnetic fields</topic><topic>Magnetic materials</topic><topic>Permeability</topic><topic>Physics</topic><topic>Sheet materials</topic><toplevel>online_resources</toplevel><creatorcontrib>Perry, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perry, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eddy current damping due to a linear periodic array of magnetic poles</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>1984-01</date><risdate>1984</risdate><volume>20</volume><issue>1</issue><spage>149</spage><epage>155</epage><pages>149-155</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Eddy currents induced in a conductor moving in a magnetic field produce a retarding force proportional to the heat generated in the material. This principle is utilized in the design of magnetic damping or "braking" systems for various applications. The problem considered here is that of a conducting sheet adjacent to a periodic array of magnetic poles. Quasistatic magnetic field solutions are derived for a sheet of arbitrary permeability and thickness moving uniformly at a fixed distance from the poles. The fields inside and outside the conducting sheet are computed over the complete range of dynamic conditions in terms of a relative magnetic penetration length. The field solutions are then employed to calculate the induced current density in the case where the conductor thickness is large in comparison with the axial pole length. The resulting braking power is computed for the purpose of establishing design principles for effective damping. The derived results are applied to two possible situations: a "high reluctance" magnetic circuit which utilizes a nonpermeable conducting sheet, and a "low reluctance" circuit which requires a highly permeable conductor. Differences in these two approaches are analyzed with respect to braking power and preferred type of permanent magnets for optimum performance.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.1984.1063005</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 1984-01, Vol.20 (1), p.149-155
issn 0018-9464
1941-0069
language eng
recordid cdi_crossref_primary_10_1109_TMAG_1984_1063005
source IEEE Electronic Library (IEL) Journals
subjects Classical and quantum physics: mechanics and fields
Classical electromagnetism, maxwell equations
Classical field theories
Conducting materials
Conductors
Damping
Dynamic range
Eddy currents
Exact sciences and technology
Magnetic circuits
Magnetic fields
Magnetic materials
Permeability
Physics
Sheet materials
title Eddy current damping due to a linear periodic array of magnetic poles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eddy%20current%20damping%20due%20to%20a%20linear%20periodic%20array%20of%20magnetic%20poles&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Perry,%20M.&rft.date=1984-01&rft.volume=20&rft.issue=1&rft.spage=149&rft.epage=155&rft.pages=149-155&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.1984.1063005&rft_dat=%3Cproquest_cross%3E28258443%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-e2c6a4170b45541bb496014db44902df3e976ee8f19015454ac57747044203463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28258443&rft_id=info:pmid/&rft_ieee_id=1063005&rfr_iscdi=true