Loading…
Eddy current damping due to a linear periodic array of magnetic poles
Eddy currents induced in a conductor moving in a magnetic field produce a retarding force proportional to the heat generated in the material. This principle is utilized in the design of magnetic damping or "braking" systems for various applications. The problem considered here is that of a...
Saved in:
Published in: | IEEE transactions on magnetics 1984-01, Vol.20 (1), p.149-155 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c323t-e2c6a4170b45541bb496014db44902df3e976ee8f19015454ac57747044203463 |
---|---|
cites | cdi_FETCH-LOGICAL-c323t-e2c6a4170b45541bb496014db44902df3e976ee8f19015454ac57747044203463 |
container_end_page | 155 |
container_issue | 1 |
container_start_page | 149 |
container_title | IEEE transactions on magnetics |
container_volume | 20 |
creator | Perry, M. |
description | Eddy currents induced in a conductor moving in a magnetic field produce a retarding force proportional to the heat generated in the material. This principle is utilized in the design of magnetic damping or "braking" systems for various applications. The problem considered here is that of a conducting sheet adjacent to a periodic array of magnetic poles. Quasistatic magnetic field solutions are derived for a sheet of arbitrary permeability and thickness moving uniformly at a fixed distance from the poles. The fields inside and outside the conducting sheet are computed over the complete range of dynamic conditions in terms of a relative magnetic penetration length. The field solutions are then employed to calculate the induced current density in the case where the conductor thickness is large in comparison with the axial pole length. The resulting braking power is computed for the purpose of establishing design principles for effective damping. The derived results are applied to two possible situations: a "high reluctance" magnetic circuit which utilizes a nonpermeable conducting sheet, and a "low reluctance" circuit which requires a highly permeable conductor. Differences in these two approaches are analyzed with respect to braking power and preferred type of permanent magnets for optimum performance. |
doi_str_mv | 10.1109/TMAG.1984.1063005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_1984_1063005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1063005</ieee_id><sourcerecordid>28258443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-e2c6a4170b45541bb496014db44902df3e976ee8f19015454ac57747044203463</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMouH78APGSg3jrmjSTtDkuy7oKK17Wc0jT6RLpl0l72H9vly7iaZjheV-Gh5AHzpacM_2y_1htl1znsORMCcbkBVlwDTxhTOlLsmCM54kGBdfkJsbvaQXJ2YJsNmV5pG4MAduBlrbpfXug5Yh06KiltW_RBtpj8F3pHbUh2CPtKtrYQ4vDdOm7GuMduapsHfH-PG_J1-tmv35Ldp_b9_VqlziRiiHB1CkLPGMFSAm8KECr6ZGyANAsLSuBOlOIecU14xIkWCezDDIGkDIBStyS57m3D93PiHEwjY8O69q22I3RpHkqcwAxgXwGXehiDFiZPvjGhqPhzJyEmZMwcxJmzsKmzNO53EZn6yrY1vn4F9RKy1TAhD3OmEfEf7VzyS9r13Ft</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28258443</pqid></control><display><type>article</type><title>Eddy current damping due to a linear periodic array of magnetic poles</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Perry, M.</creator><creatorcontrib>Perry, M.</creatorcontrib><description>Eddy currents induced in a conductor moving in a magnetic field produce a retarding force proportional to the heat generated in the material. This principle is utilized in the design of magnetic damping or "braking" systems for various applications. The problem considered here is that of a conducting sheet adjacent to a periodic array of magnetic poles. Quasistatic magnetic field solutions are derived for a sheet of arbitrary permeability and thickness moving uniformly at a fixed distance from the poles. The fields inside and outside the conducting sheet are computed over the complete range of dynamic conditions in terms of a relative magnetic penetration length. The field solutions are then employed to calculate the induced current density in the case where the conductor thickness is large in comparison with the axial pole length. The resulting braking power is computed for the purpose of establishing design principles for effective damping. The derived results are applied to two possible situations: a "high reluctance" magnetic circuit which utilizes a nonpermeable conducting sheet, and a "low reluctance" circuit which requires a highly permeable conductor. Differences in these two approaches are analyzed with respect to braking power and preferred type of permanent magnets for optimum performance.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.1984.1063005</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Classical and quantum physics: mechanics and fields ; Classical electromagnetism, maxwell equations ; Classical field theories ; Conducting materials ; Conductors ; Damping ; Dynamic range ; Eddy currents ; Exact sciences and technology ; Magnetic circuits ; Magnetic fields ; Magnetic materials ; Permeability ; Physics ; Sheet materials</subject><ispartof>IEEE transactions on magnetics, 1984-01, Vol.20 (1), p.149-155</ispartof><rights>1984 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-e2c6a4170b45541bb496014db44902df3e976ee8f19015454ac57747044203463</citedby><cites>FETCH-LOGICAL-c323t-e2c6a4170b45541bb496014db44902df3e976ee8f19015454ac57747044203463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1063005$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9695234$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Perry, M.</creatorcontrib><title>Eddy current damping due to a linear periodic array of magnetic poles</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Eddy currents induced in a conductor moving in a magnetic field produce a retarding force proportional to the heat generated in the material. This principle is utilized in the design of magnetic damping or "braking" systems for various applications. The problem considered here is that of a conducting sheet adjacent to a periodic array of magnetic poles. Quasistatic magnetic field solutions are derived for a sheet of arbitrary permeability and thickness moving uniformly at a fixed distance from the poles. The fields inside and outside the conducting sheet are computed over the complete range of dynamic conditions in terms of a relative magnetic penetration length. The field solutions are then employed to calculate the induced current density in the case where the conductor thickness is large in comparison with the axial pole length. The resulting braking power is computed for the purpose of establishing design principles for effective damping. The derived results are applied to two possible situations: a "high reluctance" magnetic circuit which utilizes a nonpermeable conducting sheet, and a "low reluctance" circuit which requires a highly permeable conductor. Differences in these two approaches are analyzed with respect to braking power and preferred type of permanent magnets for optimum performance.</description><subject>Classical and quantum physics: mechanics and fields</subject><subject>Classical electromagnetism, maxwell equations</subject><subject>Classical field theories</subject><subject>Conducting materials</subject><subject>Conductors</subject><subject>Damping</subject><subject>Dynamic range</subject><subject>Eddy currents</subject><subject>Exact sciences and technology</subject><subject>Magnetic circuits</subject><subject>Magnetic fields</subject><subject>Magnetic materials</subject><subject>Permeability</subject><subject>Physics</subject><subject>Sheet materials</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LxDAQhoMouH78APGSg3jrmjSTtDkuy7oKK17Wc0jT6RLpl0l72H9vly7iaZjheV-Gh5AHzpacM_2y_1htl1znsORMCcbkBVlwDTxhTOlLsmCM54kGBdfkJsbvaQXJ2YJsNmV5pG4MAduBlrbpfXug5Yh06KiltW_RBtpj8F3pHbUh2CPtKtrYQ4vDdOm7GuMduapsHfH-PG_J1-tmv35Ldp_b9_VqlziRiiHB1CkLPGMFSAm8KECr6ZGyANAsLSuBOlOIecU14xIkWCezDDIGkDIBStyS57m3D93PiHEwjY8O69q22I3RpHkqcwAxgXwGXehiDFiZPvjGhqPhzJyEmZMwcxJmzsKmzNO53EZn6yrY1vn4F9RKy1TAhD3OmEfEf7VzyS9r13Ft</recordid><startdate>198401</startdate><enddate>198401</enddate><creator>Perry, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>198401</creationdate><title>Eddy current damping due to a linear periodic array of magnetic poles</title><author>Perry, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-e2c6a4170b45541bb496014db44902df3e976ee8f19015454ac57747044203463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Classical and quantum physics: mechanics and fields</topic><topic>Classical electromagnetism, maxwell equations</topic><topic>Classical field theories</topic><topic>Conducting materials</topic><topic>Conductors</topic><topic>Damping</topic><topic>Dynamic range</topic><topic>Eddy currents</topic><topic>Exact sciences and technology</topic><topic>Magnetic circuits</topic><topic>Magnetic fields</topic><topic>Magnetic materials</topic><topic>Permeability</topic><topic>Physics</topic><topic>Sheet materials</topic><toplevel>online_resources</toplevel><creatorcontrib>Perry, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perry, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eddy current damping due to a linear periodic array of magnetic poles</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>1984-01</date><risdate>1984</risdate><volume>20</volume><issue>1</issue><spage>149</spage><epage>155</epage><pages>149-155</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Eddy currents induced in a conductor moving in a magnetic field produce a retarding force proportional to the heat generated in the material. This principle is utilized in the design of magnetic damping or "braking" systems for various applications. The problem considered here is that of a conducting sheet adjacent to a periodic array of magnetic poles. Quasistatic magnetic field solutions are derived for a sheet of arbitrary permeability and thickness moving uniformly at a fixed distance from the poles. The fields inside and outside the conducting sheet are computed over the complete range of dynamic conditions in terms of a relative magnetic penetration length. The field solutions are then employed to calculate the induced current density in the case where the conductor thickness is large in comparison with the axial pole length. The resulting braking power is computed for the purpose of establishing design principles for effective damping. The derived results are applied to two possible situations: a "high reluctance" magnetic circuit which utilizes a nonpermeable conducting sheet, and a "low reluctance" circuit which requires a highly permeable conductor. Differences in these two approaches are analyzed with respect to braking power and preferred type of permanent magnets for optimum performance.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.1984.1063005</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 1984-01, Vol.20 (1), p.149-155 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMAG_1984_1063005 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Classical and quantum physics: mechanics and fields Classical electromagnetism, maxwell equations Classical field theories Conducting materials Conductors Damping Dynamic range Eddy currents Exact sciences and technology Magnetic circuits Magnetic fields Magnetic materials Permeability Physics Sheet materials |
title | Eddy current damping due to a linear periodic array of magnetic poles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eddy%20current%20damping%20due%20to%20a%20linear%20periodic%20array%20of%20magnetic%20poles&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Perry,%20M.&rft.date=1984-01&rft.volume=20&rft.issue=1&rft.spage=149&rft.epage=155&rft.pages=149-155&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.1984.1063005&rft_dat=%3Cproquest_cross%3E28258443%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-e2c6a4170b45541bb496014db44902df3e976ee8f19015454ac57747044203463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28258443&rft_id=info:pmid/&rft_ieee_id=1063005&rfr_iscdi=true |