Loading…
Robot navigation based on electrostatic field computation
This paper addresses the problem of mobile robot navigation using artificial potential fields. Many potential field based methodologies are found in the robotics literature, but most of them have problems with spurious local minima, which cause the robot to stop before reaching its target position....
Saved in:
Published in: | IEEE transactions on magnetics 2006-04, Vol.42 (4), p.1459-1462 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper addresses the problem of mobile robot navigation using artificial potential fields. Many potential field based methodologies are found in the robotics literature, but most of them have problems with spurious local minima, which cause the robot to stop before reaching its target position. Although some free of local minima methodologies are found in the literature, none of them are easy to implement and generalize for complex shaped environments and robots. We propose a perfect analogy between electrostatic field computation and robot path planning. Thus, an easy solution to the problem, which is based on standard finite-element methods, can be applied with generic geometries and can even take into account the robot's orientation. To demonstrate the elegance of the proposed methodology, several experimental results with actual mobile robots are included |
---|---|
ISSN: | 0018-9464 1941-0069 |
DOI: | 10.1109/TMAG.2006.870931 |