Loading…

Effective Domain Partitioning With Electric and Magnetic Hooks

This paper discusses interface conditions used in a domain partitioning method and their approximation with a reduced number of degrees of freedom called hooks. In the electrostatic and magnetostatic cases, electric or magnetic hook-connectors are, respectively, used to describe interactions. Better...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on magnetics 2009-03, Vol.45 (3), p.1328-1331
Main Authors: Ioan, D., Ciuprina, G., Silveira, L.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper discusses interface conditions used in a domain partitioning method and their approximation with a reduced number of degrees of freedom called hooks. In the electrostatic and magnetostatic cases, electric or magnetic hook-connectors are, respectively, used to describe interactions. Better numerical results are obtained in the full wave regime by using both electric and magnetic hooks. This paper proposes an efficient approximation of the interface conditions by using a coarser grid on this surface. We have shown that the interface tends to become transparent for the electromagnetic (EM) field, when the number of hooks is increased and consider this convergence property as the main result of the paper. The proposed domain partitioning (DP) method was successfully applied as a particular domain decomposition (DD) technique for the EM modeling with parallel algorithms of RF-IC components. Unlike DD which is an iterative approach, the new DP approach is a direct one. The sub-domain models being independently extracted, DP is more effective and suitable for parallelization. The open problem of hooks identification is reformulated as a discrete optimization problem.
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2009.2012616