Loading…
Spin Transfer Switching and MR Properties of Co/Pt Multilayered Free Layers for Submicron Sized Magneto-Optical Light Modulation Device
Co/Pt multilayered films show strong perpendicular magnetic anisotropy and have a large magneto-optical Kerr effect in the short wavelength side. To use these films with submicron spatial light modulators driven by spin transfer switching (STS), we fabricated current perpendicular to plane giant mag...
Saved in:
Published in: | IEEE transactions on magnetics 2010-06, Vol.46 (6), p.2171-2174 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Co/Pt multilayered films show strong perpendicular magnetic anisotropy and have a large magneto-optical Kerr effect in the short wavelength side. To use these films with submicron spatial light modulators driven by spin transfer switching (STS), we fabricated current perpendicular to plane giant magnetoresistance (CPP-GMR) and tunnel magnetoresistance (TMR) devices with Co/Pt multilayers for free layers and investigated the MR properties, the STS characteristics, and the Kerr effects. A Kerr hysteresis loop was clearly observed in the CPP-GMR device, which was 125 Ă— 180 nm 2 . Full magnetization reversal of the Co/Pt multilayered film by spin transfer torque was demonstrated for a CPP-GMR device with a Cu-based top electrode. On the other hand, there was hardly any resistance change in a CPP-GMR with a transparent top electrode due to the low MR ratio of the device. A TMR stack with a Ag buffer layer showed a strong perpendicular magnetic anisotropy. An MR curve was detected for a TMR device with a transparent top electrode. |
---|---|
ISSN: | 0018-9464 1941-0069 |
DOI: | 10.1109/TMAG.2010.2042931 |