Loading…
A Phone-Based Distributed Ambient Temperature Measurement System With an Efficient Label-Free Automated Training Strategy
Enhancing the energy efficiency of buildings significantly relies on monitoring indoor ambient temperature. The potential limitations of conventional temperature measurement techniques, together with the omnipresence of smartphones, have redirected researchers' attention towards the exploration...
Saved in:
Published in: | IEEE transactions on mobile computing 2024-12, Vol.23 (12), p.11781-11793 |
---|---|
Main Authors: | , , , , , , |
Format: | Magazinearticle |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c296t-b961d58806c10e0cef22941a60a2b1127d34046f2f606926ad030f8fbaa3f0303 |
container_end_page | 11793 |
container_issue | 12 |
container_start_page | 11781 |
container_title | IEEE transactions on mobile computing |
container_volume | 23 |
creator | Chen, Dayin Shi, Xiaodan Zhang, Haoran Song, Xuan Zhang, Dongxiao Chen, Yuntian Yan, Jinyue |
description | Enhancing the energy efficiency of buildings significantly relies on monitoring indoor ambient temperature. The potential limitations of conventional temperature measurement techniques, together with the omnipresence of smartphones, have redirected researchers' attention towards the exploration of phone-based ambient temperature estimation methods. However, existing phone-based methods face challenges such as insufficient privacy protection, difficulty in adapting models to various phones, and hurdles in obtaining enough labeled training data. In this study, we propose a distributed phone-based ambient temperature estimation system which enables collaboration among multiple phones to accurately measure the ambient temperature in different areas of an indoor space. This system also provides an efficient, cost-effective approach with a few-shot meta-learning module and an automated label generation module. It shows that with just 5 new training data points, the temperature estimation model can adapt to a new phone and reach a good performance. Moreover, the system uses crowdsourcing to generate accurate labels for all newly collected training data, significantly reducing costs. Additionally, we highlight the potential of incorporating federated learning into our system to enhance privacy protection. We believe this study can advance the practical application of phone-based ambient temperature measurement, facilitating energy-saving efforts in buildings. |
doi_str_mv | 10.1109/TMC.2024.3399843 |
format | magazinearticle |
fullrecord | <record><control><sourceid>swepub_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMC_2024_3399843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10529590</ieee_id><sourcerecordid>oai_DiVA_org_mdh_69507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-b961d58806c10e0cef22941a60a2b1127d34046f2f606926ad030f8fbaa3f0303</originalsourceid><addsrcrecordid>eNpNkMFOwzAQRCMEEqVw58DBH0DK2k7c-BhKC0itQGqBo-Uk69aoSSrbFerfk1CEOO1oNW8OL4quKYwoBXm3WkxGDFgy4lzKLOEn0YCmaRaDEHDaZy5iyjg_jy68_wSgmZTjQXTIyeumbTC-1x4r8mB9cLbYhy7ndWGxCWSF9Q6dDnuHZIHad7fu_8uDD1iTDxs2RDdkaowtf4C5LnAbzxwiyfehrXW_tnLaNrZZk2XotnB9uIzOjN56vPq9w-htNl1NnuL5y-PzJJ_HJZMixIUUtEqzDERJAaFEw5hMqBagWUEpG1c8gUQYZgQIyYSugIPJTKE1N13kw-j2uOu_cLcv1M7ZWruDarVVD_Y9V61bq7raKCFTGHd1ONZL13rv0PwBFFRvWnWmVW9a_ZrukJsjYhHxXz1lMpXAvwHiQ3tb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype></control><display><type>magazinearticle</type><title>A Phone-Based Distributed Ambient Temperature Measurement System With an Efficient Label-Free Automated Training Strategy</title><source>IEEE Xplore (Online service)</source><creator>Chen, Dayin ; Shi, Xiaodan ; Zhang, Haoran ; Song, Xuan ; Zhang, Dongxiao ; Chen, Yuntian ; Yan, Jinyue</creator><creatorcontrib>Chen, Dayin ; Shi, Xiaodan ; Zhang, Haoran ; Song, Xuan ; Zhang, Dongxiao ; Chen, Yuntian ; Yan, Jinyue</creatorcontrib><description>Enhancing the energy efficiency of buildings significantly relies on monitoring indoor ambient temperature. The potential limitations of conventional temperature measurement techniques, together with the omnipresence of smartphones, have redirected researchers' attention towards the exploration of phone-based ambient temperature estimation methods. However, existing phone-based methods face challenges such as insufficient privacy protection, difficulty in adapting models to various phones, and hurdles in obtaining enough labeled training data. In this study, we propose a distributed phone-based ambient temperature estimation system which enables collaboration among multiple phones to accurately measure the ambient temperature in different areas of an indoor space. This system also provides an efficient, cost-effective approach with a few-shot meta-learning module and an automated label generation module. It shows that with just 5 new training data points, the temperature estimation model can adapt to a new phone and reach a good performance. Moreover, the system uses crowdsourcing to generate accurate labels for all newly collected training data, significantly reducing costs. Additionally, we highlight the potential of incorporating federated learning into our system to enhance privacy protection. We believe this study can advance the practical application of phone-based ambient temperature measurement, facilitating energy-saving efforts in buildings.</description><identifier>ISSN: 1536-1233</identifier><identifier>ISSN: 1558-0660</identifier><identifier>EISSN: 1558-0660</identifier><identifier>DOI: 10.1109/TMC.2024.3399843</identifier><identifier>CODEN: ITMCCJ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Crowdsourcing ; Data models ; Estimation ; label-free ; MAML ; phone ; Task analysis ; Temperature distribution ; Temperature measurement ; temperature measuring ; Uncertainty</subject><ispartof>IEEE transactions on mobile computing, 2024-12, Vol.23 (12), p.11781-11793</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-b961d58806c10e0cef22941a60a2b1127d34046f2f606926ad030f8fbaa3f0303</cites><orcidid>0000-0001-9575-4988 ; 0000-0002-4641-0641 ; 0000-0003-4566-8197 ; 0000-0003-4042-7888 ; 0000-0003-0300-0762 ; 0000-0001-5125-1860 ; 0000-0001-6930-5994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10529590$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,776,780,881,27904,54774</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-69507$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Dayin</creatorcontrib><creatorcontrib>Shi, Xiaodan</creatorcontrib><creatorcontrib>Zhang, Haoran</creatorcontrib><creatorcontrib>Song, Xuan</creatorcontrib><creatorcontrib>Zhang, Dongxiao</creatorcontrib><creatorcontrib>Chen, Yuntian</creatorcontrib><creatorcontrib>Yan, Jinyue</creatorcontrib><title>A Phone-Based Distributed Ambient Temperature Measurement System With an Efficient Label-Free Automated Training Strategy</title><title>IEEE transactions on mobile computing</title><addtitle>TMC</addtitle><description>Enhancing the energy efficiency of buildings significantly relies on monitoring indoor ambient temperature. The potential limitations of conventional temperature measurement techniques, together with the omnipresence of smartphones, have redirected researchers' attention towards the exploration of phone-based ambient temperature estimation methods. However, existing phone-based methods face challenges such as insufficient privacy protection, difficulty in adapting models to various phones, and hurdles in obtaining enough labeled training data. In this study, we propose a distributed phone-based ambient temperature estimation system which enables collaboration among multiple phones to accurately measure the ambient temperature in different areas of an indoor space. This system also provides an efficient, cost-effective approach with a few-shot meta-learning module and an automated label generation module. It shows that with just 5 new training data points, the temperature estimation model can adapt to a new phone and reach a good performance. Moreover, the system uses crowdsourcing to generate accurate labels for all newly collected training data, significantly reducing costs. Additionally, we highlight the potential of incorporating federated learning into our system to enhance privacy protection. We believe this study can advance the practical application of phone-based ambient temperature measurement, facilitating energy-saving efforts in buildings.</description><subject>Crowdsourcing</subject><subject>Data models</subject><subject>Estimation</subject><subject>label-free</subject><subject>MAML</subject><subject>phone</subject><subject>Task analysis</subject><subject>Temperature distribution</subject><subject>Temperature measurement</subject><subject>temperature measuring</subject><subject>Uncertainty</subject><issn>1536-1233</issn><issn>1558-0660</issn><issn>1558-0660</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2024</creationdate><recordtype>magazinearticle</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkMFOwzAQRCMEEqVw58DBH0DK2k7c-BhKC0itQGqBo-Uk69aoSSrbFerfk1CEOO1oNW8OL4quKYwoBXm3WkxGDFgy4lzKLOEn0YCmaRaDEHDaZy5iyjg_jy68_wSgmZTjQXTIyeumbTC-1x4r8mB9cLbYhy7ndWGxCWSF9Q6dDnuHZIHad7fu_8uDD1iTDxs2RDdkaowtf4C5LnAbzxwiyfehrXW_tnLaNrZZk2XotnB9uIzOjN56vPq9w-htNl1NnuL5y-PzJJ_HJZMixIUUtEqzDERJAaFEw5hMqBagWUEpG1c8gUQYZgQIyYSugIPJTKE1N13kw-j2uOu_cLcv1M7ZWruDarVVD_Y9V61bq7raKCFTGHd1ONZL13rv0PwBFFRvWnWmVW9a_ZrukJsjYhHxXz1lMpXAvwHiQ3tb</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Chen, Dayin</creator><creator>Shi, Xiaodan</creator><creator>Zhang, Haoran</creator><creator>Song, Xuan</creator><creator>Zhang, Dongxiao</creator><creator>Chen, Yuntian</creator><creator>Yan, Jinyue</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABGEM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF7</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-9575-4988</orcidid><orcidid>https://orcid.org/0000-0002-4641-0641</orcidid><orcidid>https://orcid.org/0000-0003-4566-8197</orcidid><orcidid>https://orcid.org/0000-0003-4042-7888</orcidid><orcidid>https://orcid.org/0000-0003-0300-0762</orcidid><orcidid>https://orcid.org/0000-0001-5125-1860</orcidid><orcidid>https://orcid.org/0000-0001-6930-5994</orcidid></search><sort><creationdate>20241201</creationdate><title>A Phone-Based Distributed Ambient Temperature Measurement System With an Efficient Label-Free Automated Training Strategy</title><author>Chen, Dayin ; Shi, Xiaodan ; Zhang, Haoran ; Song, Xuan ; Zhang, Dongxiao ; Chen, Yuntian ; Yan, Jinyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-b961d58806c10e0cef22941a60a2b1127d34046f2f606926ad030f8fbaa3f0303</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crowdsourcing</topic><topic>Data models</topic><topic>Estimation</topic><topic>label-free</topic><topic>MAML</topic><topic>phone</topic><topic>Task analysis</topic><topic>Temperature distribution</topic><topic>Temperature measurement</topic><topic>temperature measuring</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Dayin</creatorcontrib><creatorcontrib>Shi, Xiaodan</creatorcontrib><creatorcontrib>Zhang, Haoran</creatorcontrib><creatorcontrib>Song, Xuan</creatorcontrib><creatorcontrib>Zhang, Dongxiao</creatorcontrib><creatorcontrib>Chen, Yuntian</creatorcontrib><creatorcontrib>Yan, Jinyue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>SWEPUB Mälardalens högskola full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Mälardalens högskola</collection><collection>SwePub Articles full text</collection><jtitle>IEEE transactions on mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Dayin</au><au>Shi, Xiaodan</au><au>Zhang, Haoran</au><au>Song, Xuan</au><au>Zhang, Dongxiao</au><au>Chen, Yuntian</au><au>Yan, Jinyue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Phone-Based Distributed Ambient Temperature Measurement System With an Efficient Label-Free Automated Training Strategy</atitle><jtitle>IEEE transactions on mobile computing</jtitle><stitle>TMC</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>23</volume><issue>12</issue><spage>11781</spage><epage>11793</epage><pages>11781-11793</pages><issn>1536-1233</issn><issn>1558-0660</issn><eissn>1558-0660</eissn><coden>ITMCCJ</coden><abstract>Enhancing the energy efficiency of buildings significantly relies on monitoring indoor ambient temperature. The potential limitations of conventional temperature measurement techniques, together with the omnipresence of smartphones, have redirected researchers' attention towards the exploration of phone-based ambient temperature estimation methods. However, existing phone-based methods face challenges such as insufficient privacy protection, difficulty in adapting models to various phones, and hurdles in obtaining enough labeled training data. In this study, we propose a distributed phone-based ambient temperature estimation system which enables collaboration among multiple phones to accurately measure the ambient temperature in different areas of an indoor space. This system also provides an efficient, cost-effective approach with a few-shot meta-learning module and an automated label generation module. It shows that with just 5 new training data points, the temperature estimation model can adapt to a new phone and reach a good performance. Moreover, the system uses crowdsourcing to generate accurate labels for all newly collected training data, significantly reducing costs. Additionally, we highlight the potential of incorporating federated learning into our system to enhance privacy protection. We believe this study can advance the practical application of phone-based ambient temperature measurement, facilitating energy-saving efforts in buildings.</abstract><pub>IEEE</pub><doi>10.1109/TMC.2024.3399843</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9575-4988</orcidid><orcidid>https://orcid.org/0000-0002-4641-0641</orcidid><orcidid>https://orcid.org/0000-0003-4566-8197</orcidid><orcidid>https://orcid.org/0000-0003-4042-7888</orcidid><orcidid>https://orcid.org/0000-0003-0300-0762</orcidid><orcidid>https://orcid.org/0000-0001-5125-1860</orcidid><orcidid>https://orcid.org/0000-0001-6930-5994</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-1233 |
ispartof | IEEE transactions on mobile computing, 2024-12, Vol.23 (12), p.11781-11793 |
issn | 1536-1233 1558-0660 1558-0660 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMC_2024_3399843 |
source | IEEE Xplore (Online service) |
subjects | Crowdsourcing Data models Estimation label-free MAML phone Task analysis Temperature distribution Temperature measurement temperature measuring Uncertainty |
title | A Phone-Based Distributed Ambient Temperature Measurement System With an Efficient Label-Free Automated Training Strategy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Phone-Based%20Distributed%20Ambient%20Temperature%20Measurement%20System%20With%20an%20Efficient%20Label-Free%20Automated%20Training%20Strategy&rft.jtitle=IEEE%20transactions%20on%20mobile%20computing&rft.au=Chen,%20Dayin&rft.date=2024-12-01&rft.volume=23&rft.issue=12&rft.spage=11781&rft.epage=11793&rft.pages=11781-11793&rft.issn=1536-1233&rft.eissn=1558-0660&rft.coden=ITMCCJ&rft_id=info:doi/10.1109/TMC.2024.3399843&rft_dat=%3Cswepub_cross%3Eoai_DiVA_org_mdh_69507%3C/swepub_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-b961d58806c10e0cef22941a60a2b1127d34046f2f606926ad030f8fbaa3f0303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10529590&rfr_iscdi=true |