Loading…
Collision-Free Navigation of Autonomous Vehicles Using Convex Quadratic Programming-Based Model Predictive Control
Collision-free navigation of autonomous vehicles by means of convex quadratic programming (CQP) based model predictive control (MPC) is considered in this paper. A new collision-free navigation function is designed for real-time collision avoidance of an autonomous vehicle in both static and dynamic...
Saved in:
Published in: | IEEE/ASME transactions on mechatronics 2018-06, Vol.23 (3), p.1103-1113 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-b11777235238e5a8ad5a31cfc2ba45c3617184f141a241d0ac05f5e89cc8f493 |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-b11777235238e5a8ad5a31cfc2ba45c3617184f141a241d0ac05f5e89cc8f493 |
container_end_page | 1113 |
container_issue | 3 |
container_start_page | 1103 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 23 |
creator | Wang, Zhuping Li, Gangbin Jiang, Houjie Chen, Qijun Zhang, Hao |
description | Collision-free navigation of autonomous vehicles by means of convex quadratic programming (CQP) based model predictive control (MPC) is considered in this paper. A new collision-free navigation function is designed for real-time collision avoidance of an autonomous vehicle in both static and dynamic environments. Furthermore, vehicle shape is taken into consideration during trajectory generation as a convex polygonal region defined by linear constraints rather than a single point. Then, the MPC optimization problem with the vehicle shape is solved as a CQP-based MPC scheme in the sense of path planning. Compared to the previous MPC, which can only be reduced to a nonlinear programming problem, the control sequences of CQP-based MPC can be obtained quickly with improved real-time system performance. Simulations in diverse scenarios, including a real vehicle dataset, show the validity of the proposed approach. |
doi_str_mv | 10.1109/TMECH.2018.2816963 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMECH_2018_2816963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8319510</ieee_id><sourcerecordid>10_1109_TMECH_2018_2816963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-b11777235238e5a8ad5a31cfc2ba45c3617184f141a241d0ac05f5e89cc8f493</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7DxD6R4_GicZYlaitTykApiF7nOpBglMbLTCv6elFasZubOnFkcQq6BjQBYdrtaTvP5iDPQI65hnI3FCRlAJiFhIN9P-55pkUgp1Dm5iPGTMSaBwYCE3Ne1i863ySwg0kezcxvT9TP1FZ1sO9_6xm8jfcMPZ2uM9DW6dkNz3-7wm75sTRn6c0ufg98E0zT9MrkzEUu69CXWfY6ls53b4Z7pgq8vyVll6ohXxzokq9l0lc-TxdP9Qz5ZJFZo3iVrgDRNuVBcaFRGm1IZAbayfG2ksmIMKWhZgQTDJZTMWKYqhTqzVlcyE0PCD29t8DEGrIqv4BoTfgpgxV5a8Set2EsrjtJ66OYAOUT8B7SATAETvz9Taoc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Collision-Free Navigation of Autonomous Vehicles Using Convex Quadratic Programming-Based Model Predictive Control</title><source>IEEE Xplore (Online service)</source><creator>Wang, Zhuping ; Li, Gangbin ; Jiang, Houjie ; Chen, Qijun ; Zhang, Hao</creator><creatorcontrib>Wang, Zhuping ; Li, Gangbin ; Jiang, Houjie ; Chen, Qijun ; Zhang, Hao</creatorcontrib><description>Collision-free navigation of autonomous vehicles by means of convex quadratic programming (CQP) based model predictive control (MPC) is considered in this paper. A new collision-free navigation function is designed for real-time collision avoidance of an autonomous vehicle in both static and dynamic environments. Furthermore, vehicle shape is taken into consideration during trajectory generation as a convex polygonal region defined by linear constraints rather than a single point. Then, the MPC optimization problem with the vehicle shape is solved as a CQP-based MPC scheme in the sense of path planning. Compared to the previous MPC, which can only be reduced to a nonlinear programming problem, the control sequences of CQP-based MPC can be obtained quickly with improved real-time system performance. Simulations in diverse scenarios, including a real vehicle dataset, show the validity of the proposed approach.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2018.2816963</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>IEEE</publisher><subject>Autonomous vehicles ; Collision-free navigation ; convex quadratic programming (CQP) ; model predictive control (MPC) ; Navigation ; Optimization ; real time ; Real-time systems ; Shape ; Trajectory ; Trajectory tracking ; vehicle shape</subject><ispartof>IEEE/ASME transactions on mechatronics, 2018-06, Vol.23 (3), p.1103-1113</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-b11777235238e5a8ad5a31cfc2ba45c3617184f141a241d0ac05f5e89cc8f493</citedby><cites>FETCH-LOGICAL-c382t-b11777235238e5a8ad5a31cfc2ba45c3617184f141a241d0ac05f5e89cc8f493</cites><orcidid>0000-0002-0334-4082 ; 0000-0003-1427-4494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8319510$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wang, Zhuping</creatorcontrib><creatorcontrib>Li, Gangbin</creatorcontrib><creatorcontrib>Jiang, Houjie</creatorcontrib><creatorcontrib>Chen, Qijun</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><title>Collision-Free Navigation of Autonomous Vehicles Using Convex Quadratic Programming-Based Model Predictive Control</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Collision-free navigation of autonomous vehicles by means of convex quadratic programming (CQP) based model predictive control (MPC) is considered in this paper. A new collision-free navigation function is designed for real-time collision avoidance of an autonomous vehicle in both static and dynamic environments. Furthermore, vehicle shape is taken into consideration during trajectory generation as a convex polygonal region defined by linear constraints rather than a single point. Then, the MPC optimization problem with the vehicle shape is solved as a CQP-based MPC scheme in the sense of path planning. Compared to the previous MPC, which can only be reduced to a nonlinear programming problem, the control sequences of CQP-based MPC can be obtained quickly with improved real-time system performance. Simulations in diverse scenarios, including a real vehicle dataset, show the validity of the proposed approach.</description><subject>Autonomous vehicles</subject><subject>Collision-free navigation</subject><subject>convex quadratic programming (CQP)</subject><subject>model predictive control (MPC)</subject><subject>Navigation</subject><subject>Optimization</subject><subject>real time</subject><subject>Real-time systems</subject><subject>Shape</subject><subject>Trajectory</subject><subject>Trajectory tracking</subject><subject>vehicle shape</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqXwA7DxD6R4_GicZYlaitTykApiF7nOpBglMbLTCv6elFasZubOnFkcQq6BjQBYdrtaTvP5iDPQI65hnI3FCRlAJiFhIN9P-55pkUgp1Dm5iPGTMSaBwYCE3Ne1i863ySwg0kezcxvT9TP1FZ1sO9_6xm8jfcMPZ2uM9DW6dkNz3-7wm75sTRn6c0ufg98E0zT9MrkzEUu69CXWfY6ls53b4Z7pgq8vyVll6ohXxzokq9l0lc-TxdP9Qz5ZJFZo3iVrgDRNuVBcaFRGm1IZAbayfG2ksmIMKWhZgQTDJZTMWKYqhTqzVlcyE0PCD29t8DEGrIqv4BoTfgpgxV5a8Set2EsrjtJ66OYAOUT8B7SATAETvz9Taoc</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Wang, Zhuping</creator><creator>Li, Gangbin</creator><creator>Jiang, Houjie</creator><creator>Chen, Qijun</creator><creator>Zhang, Hao</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0334-4082</orcidid><orcidid>https://orcid.org/0000-0003-1427-4494</orcidid></search><sort><creationdate>201806</creationdate><title>Collision-Free Navigation of Autonomous Vehicles Using Convex Quadratic Programming-Based Model Predictive Control</title><author>Wang, Zhuping ; Li, Gangbin ; Jiang, Houjie ; Chen, Qijun ; Zhang, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-b11777235238e5a8ad5a31cfc2ba45c3617184f141a241d0ac05f5e89cc8f493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Autonomous vehicles</topic><topic>Collision-free navigation</topic><topic>convex quadratic programming (CQP)</topic><topic>model predictive control (MPC)</topic><topic>Navigation</topic><topic>Optimization</topic><topic>real time</topic><topic>Real-time systems</topic><topic>Shape</topic><topic>Trajectory</topic><topic>Trajectory tracking</topic><topic>vehicle shape</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhuping</creatorcontrib><creatorcontrib>Li, Gangbin</creatorcontrib><creatorcontrib>Jiang, Houjie</creatorcontrib><creatorcontrib>Chen, Qijun</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhuping</au><au>Li, Gangbin</au><au>Jiang, Houjie</au><au>Chen, Qijun</au><au>Zhang, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collision-Free Navigation of Autonomous Vehicles Using Convex Quadratic Programming-Based Model Predictive Control</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2018-06</date><risdate>2018</risdate><volume>23</volume><issue>3</issue><spage>1103</spage><epage>1113</epage><pages>1103-1113</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Collision-free navigation of autonomous vehicles by means of convex quadratic programming (CQP) based model predictive control (MPC) is considered in this paper. A new collision-free navigation function is designed for real-time collision avoidance of an autonomous vehicle in both static and dynamic environments. Furthermore, vehicle shape is taken into consideration during trajectory generation as a convex polygonal region defined by linear constraints rather than a single point. Then, the MPC optimization problem with the vehicle shape is solved as a CQP-based MPC scheme in the sense of path planning. Compared to the previous MPC, which can only be reduced to a nonlinear programming problem, the control sequences of CQP-based MPC can be obtained quickly with improved real-time system performance. Simulations in diverse scenarios, including a real vehicle dataset, show the validity of the proposed approach.</abstract><pub>IEEE</pub><doi>10.1109/TMECH.2018.2816963</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0334-4082</orcidid><orcidid>https://orcid.org/0000-0003-1427-4494</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2018-06, Vol.23 (3), p.1103-1113 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMECH_2018_2816963 |
source | IEEE Xplore (Online service) |
subjects | Autonomous vehicles Collision-free navigation convex quadratic programming (CQP) model predictive control (MPC) Navigation Optimization real time Real-time systems Shape Trajectory Trajectory tracking vehicle shape |
title | Collision-Free Navigation of Autonomous Vehicles Using Convex Quadratic Programming-Based Model Predictive Control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A19%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collision-Free%20Navigation%20of%20Autonomous%20Vehicles%20Using%20Convex%20Quadratic%20Programming-Based%20Model%20Predictive%20Control&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Wang,%20Zhuping&rft.date=2018-06&rft.volume=23&rft.issue=3&rft.spage=1103&rft.epage=1113&rft.pages=1103-1113&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2018.2816963&rft_dat=%3Ccrossref_ieee_%3E10_1109_TMECH_2018_2816963%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-b11777235238e5a8ad5a31cfc2ba45c3617184f141a241d0ac05f5e89cc8f493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8319510&rfr_iscdi=true |