Loading…

Design of a Feedforward-Feedback Controller for a Piezoelectric-Driven Mechanism to Achieve High-Frequency Nonperiodic Motion Tracking

Piezoelectric-driven mechanisms have several advantages like high stiffness, rapid response, and good resolution. Therefore, they are widely used for many micro/nano trajectory-tracking applications. However, the existence of the hysteretic nonlinearity behavior makes it challenging to use in practi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ASME transactions on mechatronics 2019-04, Vol.24 (2), p.853-862
Main Authors: Fan, Yunfeng, Tan, U-Xuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-158b15bb563f07516858ceaad3f0728ae28bad5e8f41cb6bfbcc64f5e7e792ee3
cites cdi_FETCH-LOGICAL-c344t-158b15bb563f07516858ceaad3f0728ae28bad5e8f41cb6bfbcc64f5e7e792ee3
container_end_page 862
container_issue 2
container_start_page 853
container_title IEEE/ASME transactions on mechatronics
container_volume 24
creator Fan, Yunfeng
Tan, U-Xuan
description Piezoelectric-driven mechanisms have several advantages like high stiffness, rapid response, and good resolution. Therefore, they are widely used for many micro/nano trajectory-tracking applications. However, the existence of the hysteretic nonlinearity behavior makes it challenging to use in practice. In addition, the hysteresis changes with frequency and is dependent on environmental parameters like temperature and load. Finding a method that can track both continuous periodic and nonperiodic motion under wide frequency range with high precision is nontrivial. In this study, a feedforward-feedback control strategy is proposed to bridge this gap, where a direct inverse rate-dependent Prandtl-Ishlinskii model based on radial basis function neural network to compensate rate-dependent hysteresis and a proportional-integral controller with an inner-loop disturbance observer to further attenuate tracking error (caused by the imperfect modeling, unknown lumped disturbance). The proposed method can perform a wide-bandwidth tracking control of periodic and nonperiodic motion of a piezoelectric-driven mechanism. Experiments are then conducted to demonstrate the capability of the proposed controller.
doi_str_mv 10.1109/TMECH.2019.2899069
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMECH_2019_2899069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8641306</ieee_id><sourcerecordid>2211106398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-158b15bb563f07516858ceaad3f0728ae28bad5e8f41cb6bfbcc64f5e7e792ee3</originalsourceid><addsrcrecordid>eNo9kE1OwzAQhSMEEqVwAdhYYu1iO07qLKv-UKQWWBSJneU4k9YltYuTFpUDcG4cWrGaGc1780ZfFN1S0qOUZA-L-Xg47TFCsx4TWUbS7Czq0IxTTCh_Pw89ETHmPE4uo6u6XhNCOCW0E_2MoDZLi1yJFJoAFKXzX8oXuO1zpT_Q0NnGu6oCj8IuqF4NfDuoQDfeaDzyZg8WzUGvlDX1BjUODfTKwB7Q1CxXeOLhcwdWH9Czs1vwxhVGo7lrjLNo4UOEscvr6KJUVQ03p9qN3ibjxXCKZy-PT8PBDOuY8wbTROQ0yfMkjUvST2gqEqFBqaIdmVDARK6KBETJqc7TvMy1TnmZQB_6GQOIu9H98e7Wu_BV3ci123kbIiVjNKBM40wEFTuqtHd17aGUW282yh8kJbLlLf94y5a3PPEOprujyQDAv0GknMbh6i-64H6t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211106398</pqid></control><display><type>article</type><title>Design of a Feedforward-Feedback Controller for a Piezoelectric-Driven Mechanism to Achieve High-Frequency Nonperiodic Motion Tracking</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Fan, Yunfeng ; Tan, U-Xuan</creator><creatorcontrib>Fan, Yunfeng ; Tan, U-Xuan</creatorcontrib><description>Piezoelectric-driven mechanisms have several advantages like high stiffness, rapid response, and good resolution. Therefore, they are widely used for many micro/nano trajectory-tracking applications. However, the existence of the hysteretic nonlinearity behavior makes it challenging to use in practice. In addition, the hysteresis changes with frequency and is dependent on environmental parameters like temperature and load. Finding a method that can track both continuous periodic and nonperiodic motion under wide frequency range with high precision is nontrivial. In this study, a feedforward-feedback control strategy is proposed to bridge this gap, where a direct inverse rate-dependent Prandtl-Ishlinskii model based on radial basis function neural network to compensate rate-dependent hysteresis and a proportional-integral controller with an inner-loop disturbance observer to further attenuate tracking error (caused by the imperfect modeling, unknown lumped disturbance). The proposed method can perform a wide-bandwidth tracking control of periodic and nonperiodic motion of a piezoelectric-driven mechanism. Experiments are then conducted to demonstrate the capability of the proposed controller.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2019.2899069</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Bandwidth ; Basis functions ; Control systems design ; Control theory ; Disturbance observer (DOB) ; Disturbance observers ; Feedback control ; Feedforward control ; Feedforward systems ; Frequency ranges ; Hysteresis ; Load modeling ; Neural networks ; Piezoelectric actuators ; Piezoelectricity ; Prandtl–Ishlinskii (PI) hysteresis model ; Radial basis function ; radial basis function neural network (RBFNN) ; Stiffness ; Tracking ; Tracking control ; Tracking errors</subject><ispartof>IEEE/ASME transactions on mechatronics, 2019-04, Vol.24 (2), p.853-862</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-158b15bb563f07516858ceaad3f0728ae28bad5e8f41cb6bfbcc64f5e7e792ee3</citedby><cites>FETCH-LOGICAL-c344t-158b15bb563f07516858ceaad3f0728ae28bad5e8f41cb6bfbcc64f5e7e792ee3</cites><orcidid>0000-0002-5757-1379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8641306$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Fan, Yunfeng</creatorcontrib><creatorcontrib>Tan, U-Xuan</creatorcontrib><title>Design of a Feedforward-Feedback Controller for a Piezoelectric-Driven Mechanism to Achieve High-Frequency Nonperiodic Motion Tracking</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Piezoelectric-driven mechanisms have several advantages like high stiffness, rapid response, and good resolution. Therefore, they are widely used for many micro/nano trajectory-tracking applications. However, the existence of the hysteretic nonlinearity behavior makes it challenging to use in practice. In addition, the hysteresis changes with frequency and is dependent on environmental parameters like temperature and load. Finding a method that can track both continuous periodic and nonperiodic motion under wide frequency range with high precision is nontrivial. In this study, a feedforward-feedback control strategy is proposed to bridge this gap, where a direct inverse rate-dependent Prandtl-Ishlinskii model based on radial basis function neural network to compensate rate-dependent hysteresis and a proportional-integral controller with an inner-loop disturbance observer to further attenuate tracking error (caused by the imperfect modeling, unknown lumped disturbance). The proposed method can perform a wide-bandwidth tracking control of periodic and nonperiodic motion of a piezoelectric-driven mechanism. Experiments are then conducted to demonstrate the capability of the proposed controller.</description><subject>Adaptive control</subject><subject>Bandwidth</subject><subject>Basis functions</subject><subject>Control systems design</subject><subject>Control theory</subject><subject>Disturbance observer (DOB)</subject><subject>Disturbance observers</subject><subject>Feedback control</subject><subject>Feedforward control</subject><subject>Feedforward systems</subject><subject>Frequency ranges</subject><subject>Hysteresis</subject><subject>Load modeling</subject><subject>Neural networks</subject><subject>Piezoelectric actuators</subject><subject>Piezoelectricity</subject><subject>Prandtl–Ishlinskii (PI) hysteresis model</subject><subject>Radial basis function</subject><subject>radial basis function neural network (RBFNN)</subject><subject>Stiffness</subject><subject>Tracking</subject><subject>Tracking control</subject><subject>Tracking errors</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAQhSMEEqVwAdhYYu1iO07qLKv-UKQWWBSJneU4k9YltYuTFpUDcG4cWrGaGc1780ZfFN1S0qOUZA-L-Xg47TFCsx4TWUbS7Czq0IxTTCh_Pw89ETHmPE4uo6u6XhNCOCW0E_2MoDZLi1yJFJoAFKXzX8oXuO1zpT_Q0NnGu6oCj8IuqF4NfDuoQDfeaDzyZg8WzUGvlDX1BjUODfTKwB7Q1CxXeOLhcwdWH9Czs1vwxhVGo7lrjLNo4UOEscvr6KJUVQ03p9qN3ibjxXCKZy-PT8PBDOuY8wbTROQ0yfMkjUvST2gqEqFBqaIdmVDARK6KBETJqc7TvMy1TnmZQB_6GQOIu9H98e7Wu_BV3ci123kbIiVjNKBM40wEFTuqtHd17aGUW282yh8kJbLlLf94y5a3PPEOprujyQDAv0GknMbh6i-64H6t</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Fan, Yunfeng</creator><creator>Tan, U-Xuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5757-1379</orcidid></search><sort><creationdate>201904</creationdate><title>Design of a Feedforward-Feedback Controller for a Piezoelectric-Driven Mechanism to Achieve High-Frequency Nonperiodic Motion Tracking</title><author>Fan, Yunfeng ; Tan, U-Xuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-158b15bb563f07516858ceaad3f0728ae28bad5e8f41cb6bfbcc64f5e7e792ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive control</topic><topic>Bandwidth</topic><topic>Basis functions</topic><topic>Control systems design</topic><topic>Control theory</topic><topic>Disturbance observer (DOB)</topic><topic>Disturbance observers</topic><topic>Feedback control</topic><topic>Feedforward control</topic><topic>Feedforward systems</topic><topic>Frequency ranges</topic><topic>Hysteresis</topic><topic>Load modeling</topic><topic>Neural networks</topic><topic>Piezoelectric actuators</topic><topic>Piezoelectricity</topic><topic>Prandtl–Ishlinskii (PI) hysteresis model</topic><topic>Radial basis function</topic><topic>radial basis function neural network (RBFNN)</topic><topic>Stiffness</topic><topic>Tracking</topic><topic>Tracking control</topic><topic>Tracking errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Yunfeng</creatorcontrib><creatorcontrib>Tan, U-Xuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Yunfeng</au><au>Tan, U-Xuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Feedforward-Feedback Controller for a Piezoelectric-Driven Mechanism to Achieve High-Frequency Nonperiodic Motion Tracking</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2019-04</date><risdate>2019</risdate><volume>24</volume><issue>2</issue><spage>853</spage><epage>862</epage><pages>853-862</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Piezoelectric-driven mechanisms have several advantages like high stiffness, rapid response, and good resolution. Therefore, they are widely used for many micro/nano trajectory-tracking applications. However, the existence of the hysteretic nonlinearity behavior makes it challenging to use in practice. In addition, the hysteresis changes with frequency and is dependent on environmental parameters like temperature and load. Finding a method that can track both continuous periodic and nonperiodic motion under wide frequency range with high precision is nontrivial. In this study, a feedforward-feedback control strategy is proposed to bridge this gap, where a direct inverse rate-dependent Prandtl-Ishlinskii model based on radial basis function neural network to compensate rate-dependent hysteresis and a proportional-integral controller with an inner-loop disturbance observer to further attenuate tracking error (caused by the imperfect modeling, unknown lumped disturbance). The proposed method can perform a wide-bandwidth tracking control of periodic and nonperiodic motion of a piezoelectric-driven mechanism. Experiments are then conducted to demonstrate the capability of the proposed controller.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2019.2899069</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5757-1379</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2019-04, Vol.24 (2), p.853-862
issn 1083-4435
1941-014X
language eng
recordid cdi_crossref_primary_10_1109_TMECH_2019_2899069
source IEEE Electronic Library (IEL) Journals
subjects Adaptive control
Bandwidth
Basis functions
Control systems design
Control theory
Disturbance observer (DOB)
Disturbance observers
Feedback control
Feedforward control
Feedforward systems
Frequency ranges
Hysteresis
Load modeling
Neural networks
Piezoelectric actuators
Piezoelectricity
Prandtl–Ishlinskii (PI) hysteresis model
Radial basis function
radial basis function neural network (RBFNN)
Stiffness
Tracking
Tracking control
Tracking errors
title Design of a Feedforward-Feedback Controller for a Piezoelectric-Driven Mechanism to Achieve High-Frequency Nonperiodic Motion Tracking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A14%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Feedforward-Feedback%20Controller%20for%20a%20Piezoelectric-Driven%20Mechanism%20to%20Achieve%20High-Frequency%20Nonperiodic%20Motion%20Tracking&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Fan,%20Yunfeng&rft.date=2019-04&rft.volume=24&rft.issue=2&rft.spage=853&rft.epage=862&rft.pages=853-862&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2019.2899069&rft_dat=%3Cproquest_cross%3E2211106398%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-158b15bb563f07516858ceaad3f0728ae28bad5e8f41cb6bfbcc64f5e7e792ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2211106398&rft_id=info:pmid/&rft_ieee_id=8641306&rfr_iscdi=true