Loading…
Design of a Feedforward-Feedback Controller for a Piezoelectric-Driven Mechanism to Achieve High-Frequency Nonperiodic Motion Tracking
Piezoelectric-driven mechanisms have several advantages like high stiffness, rapid response, and good resolution. Therefore, they are widely used for many micro/nano trajectory-tracking applications. However, the existence of the hysteretic nonlinearity behavior makes it challenging to use in practi...
Saved in:
Published in: | IEEE/ASME transactions on mechatronics 2019-04, Vol.24 (2), p.853-862 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c344t-158b15bb563f07516858ceaad3f0728ae28bad5e8f41cb6bfbcc64f5e7e792ee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c344t-158b15bb563f07516858ceaad3f0728ae28bad5e8f41cb6bfbcc64f5e7e792ee3 |
container_end_page | 862 |
container_issue | 2 |
container_start_page | 853 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 24 |
creator | Fan, Yunfeng Tan, U-Xuan |
description | Piezoelectric-driven mechanisms have several advantages like high stiffness, rapid response, and good resolution. Therefore, they are widely used for many micro/nano trajectory-tracking applications. However, the existence of the hysteretic nonlinearity behavior makes it challenging to use in practice. In addition, the hysteresis changes with frequency and is dependent on environmental parameters like temperature and load. Finding a method that can track both continuous periodic and nonperiodic motion under wide frequency range with high precision is nontrivial. In this study, a feedforward-feedback control strategy is proposed to bridge this gap, where a direct inverse rate-dependent Prandtl-Ishlinskii model based on radial basis function neural network to compensate rate-dependent hysteresis and a proportional-integral controller with an inner-loop disturbance observer to further attenuate tracking error (caused by the imperfect modeling, unknown lumped disturbance). The proposed method can perform a wide-bandwidth tracking control of periodic and nonperiodic motion of a piezoelectric-driven mechanism. Experiments are then conducted to demonstrate the capability of the proposed controller. |
doi_str_mv | 10.1109/TMECH.2019.2899069 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMECH_2019_2899069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8641306</ieee_id><sourcerecordid>2211106398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-158b15bb563f07516858ceaad3f0728ae28bad5e8f41cb6bfbcc64f5e7e792ee3</originalsourceid><addsrcrecordid>eNo9kE1OwzAQhSMEEqVwAdhYYu1iO07qLKv-UKQWWBSJneU4k9YltYuTFpUDcG4cWrGaGc1780ZfFN1S0qOUZA-L-Xg47TFCsx4TWUbS7Czq0IxTTCh_Pw89ETHmPE4uo6u6XhNCOCW0E_2MoDZLi1yJFJoAFKXzX8oXuO1zpT_Q0NnGu6oCj8IuqF4NfDuoQDfeaDzyZg8WzUGvlDX1BjUODfTKwB7Q1CxXeOLhcwdWH9Czs1vwxhVGo7lrjLNo4UOEscvr6KJUVQ03p9qN3ibjxXCKZy-PT8PBDOuY8wbTROQ0yfMkjUvST2gqEqFBqaIdmVDARK6KBETJqc7TvMy1TnmZQB_6GQOIu9H98e7Wu_BV3ci123kbIiVjNKBM40wEFTuqtHd17aGUW282yh8kJbLlLf94y5a3PPEOprujyQDAv0GknMbh6i-64H6t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211106398</pqid></control><display><type>article</type><title>Design of a Feedforward-Feedback Controller for a Piezoelectric-Driven Mechanism to Achieve High-Frequency Nonperiodic Motion Tracking</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Fan, Yunfeng ; Tan, U-Xuan</creator><creatorcontrib>Fan, Yunfeng ; Tan, U-Xuan</creatorcontrib><description>Piezoelectric-driven mechanisms have several advantages like high stiffness, rapid response, and good resolution. Therefore, they are widely used for many micro/nano trajectory-tracking applications. However, the existence of the hysteretic nonlinearity behavior makes it challenging to use in practice. In addition, the hysteresis changes with frequency and is dependent on environmental parameters like temperature and load. Finding a method that can track both continuous periodic and nonperiodic motion under wide frequency range with high precision is nontrivial. In this study, a feedforward-feedback control strategy is proposed to bridge this gap, where a direct inverse rate-dependent Prandtl-Ishlinskii model based on radial basis function neural network to compensate rate-dependent hysteresis and a proportional-integral controller with an inner-loop disturbance observer to further attenuate tracking error (caused by the imperfect modeling, unknown lumped disturbance). The proposed method can perform a wide-bandwidth tracking control of periodic and nonperiodic motion of a piezoelectric-driven mechanism. Experiments are then conducted to demonstrate the capability of the proposed controller.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2019.2899069</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Bandwidth ; Basis functions ; Control systems design ; Control theory ; Disturbance observer (DOB) ; Disturbance observers ; Feedback control ; Feedforward control ; Feedforward systems ; Frequency ranges ; Hysteresis ; Load modeling ; Neural networks ; Piezoelectric actuators ; Piezoelectricity ; Prandtl–Ishlinskii (PI) hysteresis model ; Radial basis function ; radial basis function neural network (RBFNN) ; Stiffness ; Tracking ; Tracking control ; Tracking errors</subject><ispartof>IEEE/ASME transactions on mechatronics, 2019-04, Vol.24 (2), p.853-862</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-158b15bb563f07516858ceaad3f0728ae28bad5e8f41cb6bfbcc64f5e7e792ee3</citedby><cites>FETCH-LOGICAL-c344t-158b15bb563f07516858ceaad3f0728ae28bad5e8f41cb6bfbcc64f5e7e792ee3</cites><orcidid>0000-0002-5757-1379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8641306$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Fan, Yunfeng</creatorcontrib><creatorcontrib>Tan, U-Xuan</creatorcontrib><title>Design of a Feedforward-Feedback Controller for a Piezoelectric-Driven Mechanism to Achieve High-Frequency Nonperiodic Motion Tracking</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Piezoelectric-driven mechanisms have several advantages like high stiffness, rapid response, and good resolution. Therefore, they are widely used for many micro/nano trajectory-tracking applications. However, the existence of the hysteretic nonlinearity behavior makes it challenging to use in practice. In addition, the hysteresis changes with frequency and is dependent on environmental parameters like temperature and load. Finding a method that can track both continuous periodic and nonperiodic motion under wide frequency range with high precision is nontrivial. In this study, a feedforward-feedback control strategy is proposed to bridge this gap, where a direct inverse rate-dependent Prandtl-Ishlinskii model based on radial basis function neural network to compensate rate-dependent hysteresis and a proportional-integral controller with an inner-loop disturbance observer to further attenuate tracking error (caused by the imperfect modeling, unknown lumped disturbance). The proposed method can perform a wide-bandwidth tracking control of periodic and nonperiodic motion of a piezoelectric-driven mechanism. Experiments are then conducted to demonstrate the capability of the proposed controller.</description><subject>Adaptive control</subject><subject>Bandwidth</subject><subject>Basis functions</subject><subject>Control systems design</subject><subject>Control theory</subject><subject>Disturbance observer (DOB)</subject><subject>Disturbance observers</subject><subject>Feedback control</subject><subject>Feedforward control</subject><subject>Feedforward systems</subject><subject>Frequency ranges</subject><subject>Hysteresis</subject><subject>Load modeling</subject><subject>Neural networks</subject><subject>Piezoelectric actuators</subject><subject>Piezoelectricity</subject><subject>Prandtl–Ishlinskii (PI) hysteresis model</subject><subject>Radial basis function</subject><subject>radial basis function neural network (RBFNN)</subject><subject>Stiffness</subject><subject>Tracking</subject><subject>Tracking control</subject><subject>Tracking errors</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAQhSMEEqVwAdhYYu1iO07qLKv-UKQWWBSJneU4k9YltYuTFpUDcG4cWrGaGc1780ZfFN1S0qOUZA-L-Xg47TFCsx4TWUbS7Czq0IxTTCh_Pw89ETHmPE4uo6u6XhNCOCW0E_2MoDZLi1yJFJoAFKXzX8oXuO1zpT_Q0NnGu6oCj8IuqF4NfDuoQDfeaDzyZg8WzUGvlDX1BjUODfTKwB7Q1CxXeOLhcwdWH9Czs1vwxhVGo7lrjLNo4UOEscvr6KJUVQ03p9qN3ibjxXCKZy-PT8PBDOuY8wbTROQ0yfMkjUvST2gqEqFBqaIdmVDARK6KBETJqc7TvMy1TnmZQB_6GQOIu9H98e7Wu_BV3ci123kbIiVjNKBM40wEFTuqtHd17aGUW282yh8kJbLlLf94y5a3PPEOprujyQDAv0GknMbh6i-64H6t</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Fan, Yunfeng</creator><creator>Tan, U-Xuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5757-1379</orcidid></search><sort><creationdate>201904</creationdate><title>Design of a Feedforward-Feedback Controller for a Piezoelectric-Driven Mechanism to Achieve High-Frequency Nonperiodic Motion Tracking</title><author>Fan, Yunfeng ; Tan, U-Xuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-158b15bb563f07516858ceaad3f0728ae28bad5e8f41cb6bfbcc64f5e7e792ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive control</topic><topic>Bandwidth</topic><topic>Basis functions</topic><topic>Control systems design</topic><topic>Control theory</topic><topic>Disturbance observer (DOB)</topic><topic>Disturbance observers</topic><topic>Feedback control</topic><topic>Feedforward control</topic><topic>Feedforward systems</topic><topic>Frequency ranges</topic><topic>Hysteresis</topic><topic>Load modeling</topic><topic>Neural networks</topic><topic>Piezoelectric actuators</topic><topic>Piezoelectricity</topic><topic>Prandtl–Ishlinskii (PI) hysteresis model</topic><topic>Radial basis function</topic><topic>radial basis function neural network (RBFNN)</topic><topic>Stiffness</topic><topic>Tracking</topic><topic>Tracking control</topic><topic>Tracking errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Yunfeng</creatorcontrib><creatorcontrib>Tan, U-Xuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Yunfeng</au><au>Tan, U-Xuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Feedforward-Feedback Controller for a Piezoelectric-Driven Mechanism to Achieve High-Frequency Nonperiodic Motion Tracking</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2019-04</date><risdate>2019</risdate><volume>24</volume><issue>2</issue><spage>853</spage><epage>862</epage><pages>853-862</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Piezoelectric-driven mechanisms have several advantages like high stiffness, rapid response, and good resolution. Therefore, they are widely used for many micro/nano trajectory-tracking applications. However, the existence of the hysteretic nonlinearity behavior makes it challenging to use in practice. In addition, the hysteresis changes with frequency and is dependent on environmental parameters like temperature and load. Finding a method that can track both continuous periodic and nonperiodic motion under wide frequency range with high precision is nontrivial. In this study, a feedforward-feedback control strategy is proposed to bridge this gap, where a direct inverse rate-dependent Prandtl-Ishlinskii model based on radial basis function neural network to compensate rate-dependent hysteresis and a proportional-integral controller with an inner-loop disturbance observer to further attenuate tracking error (caused by the imperfect modeling, unknown lumped disturbance). The proposed method can perform a wide-bandwidth tracking control of periodic and nonperiodic motion of a piezoelectric-driven mechanism. Experiments are then conducted to demonstrate the capability of the proposed controller.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2019.2899069</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5757-1379</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2019-04, Vol.24 (2), p.853-862 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMECH_2019_2899069 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptive control Bandwidth Basis functions Control systems design Control theory Disturbance observer (DOB) Disturbance observers Feedback control Feedforward control Feedforward systems Frequency ranges Hysteresis Load modeling Neural networks Piezoelectric actuators Piezoelectricity Prandtl–Ishlinskii (PI) hysteresis model Radial basis function radial basis function neural network (RBFNN) Stiffness Tracking Tracking control Tracking errors |
title | Design of a Feedforward-Feedback Controller for a Piezoelectric-Driven Mechanism to Achieve High-Frequency Nonperiodic Motion Tracking |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A14%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Feedforward-Feedback%20Controller%20for%20a%20Piezoelectric-Driven%20Mechanism%20to%20Achieve%20High-Frequency%20Nonperiodic%20Motion%20Tracking&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Fan,%20Yunfeng&rft.date=2019-04&rft.volume=24&rft.issue=2&rft.spage=853&rft.epage=862&rft.pages=853-862&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2019.2899069&rft_dat=%3Cproquest_cross%3E2211106398%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-158b15bb563f07516858ceaad3f0728ae28bad5e8f41cb6bfbcc64f5e7e792ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2211106398&rft_id=info:pmid/&rft_ieee_id=8641306&rfr_iscdi=true |