Loading…

A Finite-Memory Discretization Algorithm for the Distributed Parameter Maxwell-Slip Model

Modeling and compensating for hysteresis are widely adopted to eliminate hysteresis. The distributed parameter Maxwell-slip (DPMS) model is developed from the Maxwell-slip model by replacing the spring-slider elements with an elastic-sliding cell with distributed parameters. Motivated by the mechani...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ASME transactions on mechatronics 2020-04, Vol.25 (2), p.1138-1142
Main Authors: Liu, Yanfang, Xie, Shaobiao, Du, Desong, Qi, Naiming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-91389c7748e9b134faaac0cd53c2113c8e9495761c1883bff771f8520606626c3
cites cdi_FETCH-LOGICAL-c295t-91389c7748e9b134faaac0cd53c2113c8e9495761c1883bff771f8520606626c3
container_end_page 1142
container_issue 2
container_start_page 1138
container_title IEEE/ASME transactions on mechatronics
container_volume 25
creator Liu, Yanfang
Xie, Shaobiao
Du, Desong
Qi, Naiming
description Modeling and compensating for hysteresis are widely adopted to eliminate hysteresis. The distributed parameter Maxwell-slip (DPMS) model is developed from the Maxwell-slip model by replacing the spring-slider elements with an elastic-sliding cell with distributed parameters. Motivated by the mechanism of human memory, this article proposes a finite-memory (FM) discretization approach for the DPMS model. The change in the infinite internal state is represented by updating the finite peak points. The FM approach is verified using a piezoelectric actuator, and the normalized mean square error is 0.27%. Thus, the FM approach is also advantageous for managing small-amplitude excitations.
doi_str_mv 10.1109/TMECH.2020.2975264
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMECH_2020_2975264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9005252</ieee_id><sourcerecordid>2393778123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-91389c7748e9b134faaac0cd53c2113c8e9495761c1883bff771f8520606626c3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1sz-dhsjqW2VuiiYAU9hTTN2pRtU7MpWn-9W1s8zcvwvDPwIHQNpAdA1N20HA7GPUoo6VElBc35CeqA4pAR4G-nbSYFyzhn4hxdNM2SEMKBQAe99_HIr31yWelWIe7wvW9sdMn_mOTDGvfrjxB9WqxwFSJOC7cHUvSzbXJz_GyiWbnkIi7N95er6-yl9htchrmrL9FZZerGXR1nF72OhtPBOJs8PTwO-pPMUiVSpoAVykrJC6dmwHhljLHEzgWzFIDZds2VkDlYKAo2qyopoSoEJTnJc5pb1kW3h7ubGD63rkl6GbZx3b7UlCkmZQGUtRQ9UDaGpomu0pvoVybuNBC9V6j_FOq9Qn1U2JZuDiXvnPsvKEIEFZT9AuR6bFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393778123</pqid></control><display><type>article</type><title>A Finite-Memory Discretization Algorithm for the Distributed Parameter Maxwell-Slip Model</title><source>IEEE Xplore (Online service)</source><creator>Liu, Yanfang ; Xie, Shaobiao ; Du, Desong ; Qi, Naiming</creator><creatorcontrib>Liu, Yanfang ; Xie, Shaobiao ; Du, Desong ; Qi, Naiming</creatorcontrib><description>Modeling and compensating for hysteresis are widely adopted to eliminate hysteresis. The distributed parameter Maxwell-slip (DPMS) model is developed from the Maxwell-slip model by replacing the spring-slider elements with an elastic-sliding cell with distributed parameters. Motivated by the mechanism of human memory, this article proposes a finite-memory (FM) discretization approach for the DPMS model. The change in the infinite internal state is represented by updating the finite peak points. The FM approach is verified using a piezoelectric actuator, and the normalized mean square error is 0.27%. Thus, the FM approach is also advantageous for managing small-amplitude excitations.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2020.2975264</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Algorithms ; Discretization ; Distributed parameter ; finite memory (FM) ; Frequency modulation ; Hysteresis ; IEEE transactions ; Magnetic hysteresis ; Mathematical model ; Mathematical models ; Mechatronics ; modeling and identification ; Parameters ; piezoelectric actuator (PEA) ; Piezoelectric actuators ; Piezoelectricity ; Predictive models ; Slip</subject><ispartof>IEEE/ASME transactions on mechatronics, 2020-04, Vol.25 (2), p.1138-1142</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-91389c7748e9b134faaac0cd53c2113c8e9495761c1883bff771f8520606626c3</citedby><cites>FETCH-LOGICAL-c295t-91389c7748e9b134faaac0cd53c2113c8e9495761c1883bff771f8520606626c3</cites><orcidid>0000-0001-9644-9459 ; 0000-0002-8791-0044 ; 0000-0001-7130-4317 ; 0000-0003-0401-5616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9005252$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Liu, Yanfang</creatorcontrib><creatorcontrib>Xie, Shaobiao</creatorcontrib><creatorcontrib>Du, Desong</creatorcontrib><creatorcontrib>Qi, Naiming</creatorcontrib><title>A Finite-Memory Discretization Algorithm for the Distributed Parameter Maxwell-Slip Model</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Modeling and compensating for hysteresis are widely adopted to eliminate hysteresis. The distributed parameter Maxwell-slip (DPMS) model is developed from the Maxwell-slip model by replacing the spring-slider elements with an elastic-sliding cell with distributed parameters. Motivated by the mechanism of human memory, this article proposes a finite-memory (FM) discretization approach for the DPMS model. The change in the infinite internal state is represented by updating the finite peak points. The FM approach is verified using a piezoelectric actuator, and the normalized mean square error is 0.27%. Thus, the FM approach is also advantageous for managing small-amplitude excitations.</description><subject>Actuators</subject><subject>Algorithms</subject><subject>Discretization</subject><subject>Distributed parameter</subject><subject>finite memory (FM)</subject><subject>Frequency modulation</subject><subject>Hysteresis</subject><subject>IEEE transactions</subject><subject>Magnetic hysteresis</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Mechatronics</subject><subject>modeling and identification</subject><subject>Parameters</subject><subject>piezoelectric actuator (PEA)</subject><subject>Piezoelectric actuators</subject><subject>Piezoelectricity</subject><subject>Predictive models</subject><subject>Slip</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1sz-dhsjqW2VuiiYAU9hTTN2pRtU7MpWn-9W1s8zcvwvDPwIHQNpAdA1N20HA7GPUoo6VElBc35CeqA4pAR4G-nbSYFyzhn4hxdNM2SEMKBQAe99_HIr31yWelWIe7wvW9sdMn_mOTDGvfrjxB9WqxwFSJOC7cHUvSzbXJz_GyiWbnkIi7N95er6-yl9htchrmrL9FZZerGXR1nF72OhtPBOJs8PTwO-pPMUiVSpoAVykrJC6dmwHhljLHEzgWzFIDZds2VkDlYKAo2qyopoSoEJTnJc5pb1kW3h7ubGD63rkl6GbZx3b7UlCkmZQGUtRQ9UDaGpomu0pvoVybuNBC9V6j_FOq9Qn1U2JZuDiXvnPsvKEIEFZT9AuR6bFw</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Liu, Yanfang</creator><creator>Xie, Shaobiao</creator><creator>Du, Desong</creator><creator>Qi, Naiming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9644-9459</orcidid><orcidid>https://orcid.org/0000-0002-8791-0044</orcidid><orcidid>https://orcid.org/0000-0001-7130-4317</orcidid><orcidid>https://orcid.org/0000-0003-0401-5616</orcidid></search><sort><creationdate>202004</creationdate><title>A Finite-Memory Discretization Algorithm for the Distributed Parameter Maxwell-Slip Model</title><author>Liu, Yanfang ; Xie, Shaobiao ; Du, Desong ; Qi, Naiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-91389c7748e9b134faaac0cd53c2113c8e9495761c1883bff771f8520606626c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuators</topic><topic>Algorithms</topic><topic>Discretization</topic><topic>Distributed parameter</topic><topic>finite memory (FM)</topic><topic>Frequency modulation</topic><topic>Hysteresis</topic><topic>IEEE transactions</topic><topic>Magnetic hysteresis</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Mechatronics</topic><topic>modeling and identification</topic><topic>Parameters</topic><topic>piezoelectric actuator (PEA)</topic><topic>Piezoelectric actuators</topic><topic>Piezoelectricity</topic><topic>Predictive models</topic><topic>Slip</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yanfang</creatorcontrib><creatorcontrib>Xie, Shaobiao</creatorcontrib><creatorcontrib>Du, Desong</creatorcontrib><creatorcontrib>Qi, Naiming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yanfang</au><au>Xie, Shaobiao</au><au>Du, Desong</au><au>Qi, Naiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Finite-Memory Discretization Algorithm for the Distributed Parameter Maxwell-Slip Model</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2020-04</date><risdate>2020</risdate><volume>25</volume><issue>2</issue><spage>1138</spage><epage>1142</epage><pages>1138-1142</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Modeling and compensating for hysteresis are widely adopted to eliminate hysteresis. The distributed parameter Maxwell-slip (DPMS) model is developed from the Maxwell-slip model by replacing the spring-slider elements with an elastic-sliding cell with distributed parameters. Motivated by the mechanism of human memory, this article proposes a finite-memory (FM) discretization approach for the DPMS model. The change in the infinite internal state is represented by updating the finite peak points. The FM approach is verified using a piezoelectric actuator, and the normalized mean square error is 0.27%. Thus, the FM approach is also advantageous for managing small-amplitude excitations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2020.2975264</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9644-9459</orcidid><orcidid>https://orcid.org/0000-0002-8791-0044</orcidid><orcidid>https://orcid.org/0000-0001-7130-4317</orcidid><orcidid>https://orcid.org/0000-0003-0401-5616</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2020-04, Vol.25 (2), p.1138-1142
issn 1083-4435
1941-014X
language eng
recordid cdi_crossref_primary_10_1109_TMECH_2020_2975264
source IEEE Xplore (Online service)
subjects Actuators
Algorithms
Discretization
Distributed parameter
finite memory (FM)
Frequency modulation
Hysteresis
IEEE transactions
Magnetic hysteresis
Mathematical model
Mathematical models
Mechatronics
modeling and identification
Parameters
piezoelectric actuator (PEA)
Piezoelectric actuators
Piezoelectricity
Predictive models
Slip
title A Finite-Memory Discretization Algorithm for the Distributed Parameter Maxwell-Slip Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A33%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Finite-Memory%20Discretization%20Algorithm%20for%20the%20Distributed%20Parameter%20Maxwell-Slip%20Model&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Liu,%20Yanfang&rft.date=2020-04&rft.volume=25&rft.issue=2&rft.spage=1138&rft.epage=1142&rft.pages=1138-1142&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2020.2975264&rft_dat=%3Cproquest_cross%3E2393778123%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-91389c7748e9b134faaac0cd53c2113c8e9495761c1883bff771f8520606626c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2393778123&rft_id=info:pmid/&rft_ieee_id=9005252&rfr_iscdi=true