Loading…

RoMop: A New Type of Wheeled Mobile Platform Based on Rotating Locomotion

To address the problems of conventional mobile platforms for mobile manipulators, this article proposes the design and control of a new type of mobile platform, whose locomotion method is based on constant rotation. The proposed mobile platform is actuated by three conventional wheels, each of which...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ASME transactions on mechatronics 2024-08, Vol.29 (4), p.2510-2521
Main Authors: Lin, Geng, Terakawa, Tatsuro, Shinno, Koichiro, Inoue, Taichi, Komori, Masaharu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c296t-149b35422ac472067e63f46374e4d6c0215acbd61d273582f4cc446a8487b00a3
cites cdi_FETCH-LOGICAL-c296t-149b35422ac472067e63f46374e4d6c0215acbd61d273582f4cc446a8487b00a3
container_end_page 2521
container_issue 4
container_start_page 2510
container_title IEEE/ASME transactions on mechatronics
container_volume 29
creator Lin, Geng
Terakawa, Tatsuro
Shinno, Koichiro
Inoue, Taichi
Komori, Masaharu
description To address the problems of conventional mobile platforms for mobile manipulators, this article proposes the design and control of a new type of mobile platform, whose locomotion method is based on constant rotation. The proposed mobile platform is actuated by three conventional wheels, each of which is connected to the main body by a single-DOF passive planar motion mechanism. By rotating the platform during locomotion, multidirectional translation can be realized by avoiding singular configurations. The proposed mobile platform offers benefits in terms of high maneuverability, high precision, and low vibration. In this article, the mechanism and kinematics of the proposed mobile platform are first presented. Based on the singularity analysis, applicable locomotion methods and the design conditions of the planar motion mechanism are discussed. An example of the proposed mobile platform is introduced, and its kinematic characteristics and approximate model are then presented. To achieve obstacle and tip-over avoidance, a trajectory tracking control system based on model predictive control and a path planner was also developed. Finally, experiments using the prototype are presented. The results verify the effectiveness of the developed mobile platform and its control strategies.
doi_str_mv 10.1109/TMECH.2023.3333016
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMECH_2023_3333016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10339858</ieee_id><sourcerecordid>3094517529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-149b35422ac472067e63f46374e4d6c0215acbd61d273582f4cc446a8487b00a3</originalsourceid><addsrcrecordid>eNpNkFFLwzAQx4MoOKdfQHwI-Nx5Sa5p69sc0w02lTHRt5CmqXa0TW06ZN_ezu3Be7nj-P_u4EfINYMRY5DcrZfTyWzEgYuR6AuYPCEDliALgOHHaT9DLAJEEZ6TC-83AIAM2IDMV27pmns6ps_2h653jaUup-9f1pY2o0uXFqWlr6XuctdW9EH7futqunKd7or6ky6ccZXrCldfkrNcl95eHfuQvD1O15NZsHh5mk_Gi8DwRHYBwyQVIXKuDUYcZGSlyFGKCC1m0gBnoTZpJlnGIxHGPEdjEKWOMY5SAC2G5PZwt2nd99b6Tm3ctq37l0pAgiGLQp70KX5ImdZ539pcNW1R6XanGKi9MvWnTO2VqaOyHro5QIW19h8gRBKHsfgFti5lJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094517529</pqid></control><display><type>article</type><title>RoMop: A New Type of Wheeled Mobile Platform Based on Rotating Locomotion</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lin, Geng ; Terakawa, Tatsuro ; Shinno, Koichiro ; Inoue, Taichi ; Komori, Masaharu</creator><creatorcontrib>Lin, Geng ; Terakawa, Tatsuro ; Shinno, Koichiro ; Inoue, Taichi ; Komori, Masaharu</creatorcontrib><description>To address the problems of conventional mobile platforms for mobile manipulators, this article proposes the design and control of a new type of mobile platform, whose locomotion method is based on constant rotation. The proposed mobile platform is actuated by three conventional wheels, each of which is connected to the main body by a single-DOF passive planar motion mechanism. By rotating the platform during locomotion, multidirectional translation can be realized by avoiding singular configurations. The proposed mobile platform offers benefits in terms of high maneuverability, high precision, and low vibration. In this article, the mechanism and kinematics of the proposed mobile platform are first presented. Based on the singularity analysis, applicable locomotion methods and the design conditions of the planar motion mechanism are discussed. An example of the proposed mobile platform is introduced, and its kinematic characteristics and approximate model are then presented. To achieve obstacle and tip-over avoidance, a trajectory tracking control system based on model predictive control and a path planner was also developed. Finally, experiments using the prototype are presented. The results verify the effectiveness of the developed mobile platform and its control strategies.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2023.3333016</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Collision avoidance ; Kinematics ; Locomotion ; Mobile platform ; Mobile robots ; model predictive control (MPC) ; motion analysis ; obstacle avoidance ; Predictive control ; Robot kinematics ; Rotating bodies ; Rotation ; tip-over avoidance ; Tracking control ; Trajectory control ; Vibration analysis ; Wheels</subject><ispartof>IEEE/ASME transactions on mechatronics, 2024-08, Vol.29 (4), p.2510-2521</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-149b35422ac472067e63f46374e4d6c0215acbd61d273582f4cc446a8487b00a3</citedby><cites>FETCH-LOGICAL-c296t-149b35422ac472067e63f46374e4d6c0215acbd61d273582f4cc446a8487b00a3</cites><orcidid>0000-0002-9418-3156 ; 0000-0001-8696-8167 ; 0000-0002-1270-6284 ; 0000-0002-9943-863X ; 0000-0001-5348-7287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10339858$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Lin, Geng</creatorcontrib><creatorcontrib>Terakawa, Tatsuro</creatorcontrib><creatorcontrib>Shinno, Koichiro</creatorcontrib><creatorcontrib>Inoue, Taichi</creatorcontrib><creatorcontrib>Komori, Masaharu</creatorcontrib><title>RoMop: A New Type of Wheeled Mobile Platform Based on Rotating Locomotion</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>To address the problems of conventional mobile platforms for mobile manipulators, this article proposes the design and control of a new type of mobile platform, whose locomotion method is based on constant rotation. The proposed mobile platform is actuated by three conventional wheels, each of which is connected to the main body by a single-DOF passive planar motion mechanism. By rotating the platform during locomotion, multidirectional translation can be realized by avoiding singular configurations. The proposed mobile platform offers benefits in terms of high maneuverability, high precision, and low vibration. In this article, the mechanism and kinematics of the proposed mobile platform are first presented. Based on the singularity analysis, applicable locomotion methods and the design conditions of the planar motion mechanism are discussed. An example of the proposed mobile platform is introduced, and its kinematic characteristics and approximate model are then presented. To achieve obstacle and tip-over avoidance, a trajectory tracking control system based on model predictive control and a path planner was also developed. Finally, experiments using the prototype are presented. The results verify the effectiveness of the developed mobile platform and its control strategies.</description><subject>Collision avoidance</subject><subject>Kinematics</subject><subject>Locomotion</subject><subject>Mobile platform</subject><subject>Mobile robots</subject><subject>model predictive control (MPC)</subject><subject>motion analysis</subject><subject>obstacle avoidance</subject><subject>Predictive control</subject><subject>Robot kinematics</subject><subject>Rotating bodies</subject><subject>Rotation</subject><subject>tip-over avoidance</subject><subject>Tracking control</subject><subject>Trajectory control</subject><subject>Vibration analysis</subject><subject>Wheels</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkFFLwzAQx4MoOKdfQHwI-Nx5Sa5p69sc0w02lTHRt5CmqXa0TW06ZN_ezu3Be7nj-P_u4EfINYMRY5DcrZfTyWzEgYuR6AuYPCEDliALgOHHaT9DLAJEEZ6TC-83AIAM2IDMV27pmns6ps_2h653jaUup-9f1pY2o0uXFqWlr6XuctdW9EH7futqunKd7or6ky6ccZXrCldfkrNcl95eHfuQvD1O15NZsHh5mk_Gi8DwRHYBwyQVIXKuDUYcZGSlyFGKCC1m0gBnoTZpJlnGIxHGPEdjEKWOMY5SAC2G5PZwt2nd99b6Tm3ctq37l0pAgiGLQp70KX5ImdZ539pcNW1R6XanGKi9MvWnTO2VqaOyHro5QIW19h8gRBKHsfgFti5lJg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Lin, Geng</creator><creator>Terakawa, Tatsuro</creator><creator>Shinno, Koichiro</creator><creator>Inoue, Taichi</creator><creator>Komori, Masaharu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9418-3156</orcidid><orcidid>https://orcid.org/0000-0001-8696-8167</orcidid><orcidid>https://orcid.org/0000-0002-1270-6284</orcidid><orcidid>https://orcid.org/0000-0002-9943-863X</orcidid><orcidid>https://orcid.org/0000-0001-5348-7287</orcidid></search><sort><creationdate>20240801</creationdate><title>RoMop: A New Type of Wheeled Mobile Platform Based on Rotating Locomotion</title><author>Lin, Geng ; Terakawa, Tatsuro ; Shinno, Koichiro ; Inoue, Taichi ; Komori, Masaharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-149b35422ac472067e63f46374e4d6c0215acbd61d273582f4cc446a8487b00a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Collision avoidance</topic><topic>Kinematics</topic><topic>Locomotion</topic><topic>Mobile platform</topic><topic>Mobile robots</topic><topic>model predictive control (MPC)</topic><topic>motion analysis</topic><topic>obstacle avoidance</topic><topic>Predictive control</topic><topic>Robot kinematics</topic><topic>Rotating bodies</topic><topic>Rotation</topic><topic>tip-over avoidance</topic><topic>Tracking control</topic><topic>Trajectory control</topic><topic>Vibration analysis</topic><topic>Wheels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Geng</creatorcontrib><creatorcontrib>Terakawa, Tatsuro</creatorcontrib><creatorcontrib>Shinno, Koichiro</creatorcontrib><creatorcontrib>Inoue, Taichi</creatorcontrib><creatorcontrib>Komori, Masaharu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Geng</au><au>Terakawa, Tatsuro</au><au>Shinno, Koichiro</au><au>Inoue, Taichi</au><au>Komori, Masaharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RoMop: A New Type of Wheeled Mobile Platform Based on Rotating Locomotion</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>29</volume><issue>4</issue><spage>2510</spage><epage>2521</epage><pages>2510-2521</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>To address the problems of conventional mobile platforms for mobile manipulators, this article proposes the design and control of a new type of mobile platform, whose locomotion method is based on constant rotation. The proposed mobile platform is actuated by three conventional wheels, each of which is connected to the main body by a single-DOF passive planar motion mechanism. By rotating the platform during locomotion, multidirectional translation can be realized by avoiding singular configurations. The proposed mobile platform offers benefits in terms of high maneuverability, high precision, and low vibration. In this article, the mechanism and kinematics of the proposed mobile platform are first presented. Based on the singularity analysis, applicable locomotion methods and the design conditions of the planar motion mechanism are discussed. An example of the proposed mobile platform is introduced, and its kinematic characteristics and approximate model are then presented. To achieve obstacle and tip-over avoidance, a trajectory tracking control system based on model predictive control and a path planner was also developed. Finally, experiments using the prototype are presented. The results verify the effectiveness of the developed mobile platform and its control strategies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2023.3333016</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9418-3156</orcidid><orcidid>https://orcid.org/0000-0001-8696-8167</orcidid><orcidid>https://orcid.org/0000-0002-1270-6284</orcidid><orcidid>https://orcid.org/0000-0002-9943-863X</orcidid><orcidid>https://orcid.org/0000-0001-5348-7287</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2024-08, Vol.29 (4), p.2510-2521
issn 1083-4435
1941-014X
language eng
recordid cdi_crossref_primary_10_1109_TMECH_2023_3333016
source IEEE Electronic Library (IEL) Journals
subjects Collision avoidance
Kinematics
Locomotion
Mobile platform
Mobile robots
model predictive control (MPC)
motion analysis
obstacle avoidance
Predictive control
Robot kinematics
Rotating bodies
Rotation
tip-over avoidance
Tracking control
Trajectory control
Vibration analysis
Wheels
title RoMop: A New Type of Wheeled Mobile Platform Based on Rotating Locomotion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RoMop:%20A%20New%20Type%20of%20Wheeled%20Mobile%20Platform%20Based%20on%20Rotating%20Locomotion&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Lin,%20Geng&rft.date=2024-08-01&rft.volume=29&rft.issue=4&rft.spage=2510&rft.epage=2521&rft.pages=2510-2521&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2023.3333016&rft_dat=%3Cproquest_cross%3E3094517529%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-149b35422ac472067e63f46374e4d6c0215acbd61d273582f4cc446a8487b00a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3094517529&rft_id=info:pmid/&rft_ieee_id=10339858&rfr_iscdi=true