Loading…

Surface normal overlap: a computer-aided detection algorithm with application to colonic polyps and lung nodules in helical CT

We developed a novel computer-aided detection (CAD) algorithm called the surface normal overlap method that we applied to colonic polyp detection and lung nodule detection in helical computed tomography (CT) images. We demonstrate some of the theoretical aspects of this algorithm using a statistical...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2004-06, Vol.23 (6), p.661-675
Main Authors: Paik, D.S., Beaulieu, C.F., Rubin, G.D., Acar, B., Jeffrey, R.B., Yee, J., Dey, J., Napel, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We developed a novel computer-aided detection (CAD) algorithm called the surface normal overlap method that we applied to colonic polyp detection and lung nodule detection in helical computed tomography (CT) images. We demonstrate some of the theoretical aspects of this algorithm using a statistical shape model. The algorithm was then optimized on simulated CT data and evaluated using a per-lesion cross-validation on 8 CT colonography datasets and on 8 chest CT datasets. It is able to achieve 100% sensitivity for colonic polyps 10 mm and larger at 7.0 false positives (FPs)/dataset and 90% sensitivity for solid lung nodules 6 mm and larger at 5.6 FP/dataset.
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2004.826362