Loading…

Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data

Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2017-01, Vol.36 (1), p.203-213
Main Authors: Jieqing Jiao, Bousse, Alexandre, Thielemans, Kris, Burgos, Ninon, Weston, Philip S. J., Schott, Jonathan M., Atkinson, David, Arridge, Simon R., Hutton, Brian F., Markiewicz, Pawel, Ourselin, Sebastien
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-c2bb9c64eb2dfa8d6afd6257482adf083562521b066585ac10a24d1a928361dd3
cites cdi_FETCH-LOGICAL-c470t-c2bb9c64eb2dfa8d6afd6257482adf083562521b066585ac10a24d1a928361dd3
container_end_page 213
container_issue 1
container_start_page 203
container_title IEEE transactions on medical imaging
container_volume 36
creator Jieqing Jiao
Bousse, Alexandre
Thielemans, Kris
Burgos, Ninon
Weston, Philip S. J.
Schott, Jonathan M.
Atkinson, David
Arridge, Simon R.
Hutton, Brian F.
Markiewicz, Pawel
Ourselin, Sebastien
description Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propose a framework to jointly estimate subject head motion and reconstruct the motion-corrected parametric images directly from raw PET data, so that the effects of distorted tissue-to-voxel mapping due to subject motion can be reduced in reconstructing the parametric images with motion-compensated attenuation correction and spatially aligned temporal PET data. The proposed approach is formulated within the maximum likelihood framework, and efficient solutions are derived for estimating subject motion and kinetic parameters from raw PET photon count data. Results from evaluations on simulated [ 11 C]raclopride data using the Zubal brain phantom and real clinical [ 18 F]florbetapir data of a patient with Alzheimer's disease show that the proposed joint direct parametric reconstruction motion correction approach can improve the accuracy of quantifying dynamic PET data with large subject motion.
doi_str_mv 10.1109/TMI.2016.2594150
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMI_2016_2594150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7551132</ieee_id><sourcerecordid>1856590849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-c2bb9c64eb2dfa8d6afd6257482adf083562521b066585ac10a24d1a928361dd3</originalsourceid><addsrcrecordid>eNpdkc9v0zAcxS0EYmVwR0JCkbjAId3368Q_chxtYUOdmFAR3CzHcTRPTTxsB2n_PQ4tPXCy_fx5T1_7EfIaYYkIzcXu5npJAfmSsqZGBk_IAhmTJWX1z6dkAVTIEoDTM_IixnsArBk0z8kZFUxwWlcLYtYuWJOKWx30YFNwpvhmjR9jCpNJzo_FD5fuii_ejam48X-VTUxu0PP2YuXDbJ_V3odi_TjqIUd8DNqNxe1mV6x10i_Js17vo311XM_J90-b3eqq3H79fL263JamFpBKQ9u2Mby2Le16LTuu-45TJmpJddeDrFg-UWyBcyaZNgia1h3qhsqKY9dV5-TDIfdO79VDyDOGR-W1U1eXWzVrgJIKbMRvzOz7A_sQ_K_JxqQGF43d7_Vo_RQVSsZZA7JuMvruP_TeT2HML5mp_JGiApEpOFAm-BiD7U8TIKi5LJXLUnNZ6lhWtrw9Bk_tYLuT4V87GXhzAJy19nQtGEOsaPUHP0SWgw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855767307</pqid></control><display><type>article</type><title>Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jieqing Jiao ; Bousse, Alexandre ; Thielemans, Kris ; Burgos, Ninon ; Weston, Philip S. J. ; Schott, Jonathan M. ; Atkinson, David ; Arridge, Simon R. ; Hutton, Brian F. ; Markiewicz, Pawel ; Ourselin, Sebastien</creator><creatorcontrib>Jieqing Jiao ; Bousse, Alexandre ; Thielemans, Kris ; Burgos, Ninon ; Weston, Philip S. J. ; Schott, Jonathan M. ; Atkinson, David ; Arridge, Simon R. ; Hutton, Brian F. ; Markiewicz, Pawel ; Ourselin, Sebastien</creatorcontrib><description>Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propose a framework to jointly estimate subject head motion and reconstruct the motion-corrected parametric images directly from raw PET data, so that the effects of distorted tissue-to-voxel mapping due to subject motion can be reduced in reconstructing the parametric images with motion-compensated attenuation correction and spatially aligned temporal PET data. The proposed approach is formulated within the maximum likelihood framework, and efficient solutions are derived for estimating subject motion and kinetic parameters from raw PET photon count data. Results from evaluations on simulated [ 11 C]raclopride data using the Zubal brain phantom and real clinical [ 18 F]florbetapir data of a patient with Alzheimer's disease show that the proposed joint direct parametric reconstruction motion correction approach can improve the accuracy of quantifying dynamic PET data with large subject motion.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2016.2594150</identifier><identifier>PMID: 27576243</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Alzheimer's disease ; Attenuation ; Biomedical imaging ; Brain ; Computer Science ; Dynamic PET ; Dynamics ; Emission analysis ; Estimation ; Head movement ; Humans ; Image Processing, Computer-Assisted ; Image reconstruction ; kinetic analysis ; Kinetic theory ; Medical Imaging ; Motion ; motion correction ; Motion simulation ; PET reconstruction ; Phantoms, Imaging ; Photonics ; Photons ; Positron emission ; Positron emission tomography ; Raclopride ; Tomography</subject><ispartof>IEEE transactions on medical imaging, 2017-01, Vol.36 (1), p.203-213</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-c2bb9c64eb2dfa8d6afd6257482adf083562521b066585ac10a24d1a928361dd3</citedby><cites>FETCH-LOGICAL-c470t-c2bb9c64eb2dfa8d6afd6257482adf083562521b066585ac10a24d1a928361dd3</cites><orcidid>0000-0002-4668-2006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7551132$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27576243$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-01827197$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jieqing Jiao</creatorcontrib><creatorcontrib>Bousse, Alexandre</creatorcontrib><creatorcontrib>Thielemans, Kris</creatorcontrib><creatorcontrib>Burgos, Ninon</creatorcontrib><creatorcontrib>Weston, Philip S. J.</creatorcontrib><creatorcontrib>Schott, Jonathan M.</creatorcontrib><creatorcontrib>Atkinson, David</creatorcontrib><creatorcontrib>Arridge, Simon R.</creatorcontrib><creatorcontrib>Hutton, Brian F.</creatorcontrib><creatorcontrib>Markiewicz, Pawel</creatorcontrib><creatorcontrib>Ourselin, Sebastien</creatorcontrib><title>Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propose a framework to jointly estimate subject head motion and reconstruct the motion-corrected parametric images directly from raw PET data, so that the effects of distorted tissue-to-voxel mapping due to subject motion can be reduced in reconstructing the parametric images with motion-compensated attenuation correction and spatially aligned temporal PET data. The proposed approach is formulated within the maximum likelihood framework, and efficient solutions are derived for estimating subject motion and kinetic parameters from raw PET photon count data. Results from evaluations on simulated [ 11 C]raclopride data using the Zubal brain phantom and real clinical [ 18 F]florbetapir data of a patient with Alzheimer's disease show that the proposed joint direct parametric reconstruction motion correction approach can improve the accuracy of quantifying dynamic PET data with large subject motion.</description><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Attenuation</subject><subject>Biomedical imaging</subject><subject>Brain</subject><subject>Computer Science</subject><subject>Dynamic PET</subject><subject>Dynamics</subject><subject>Emission analysis</subject><subject>Estimation</subject><subject>Head movement</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image reconstruction</subject><subject>kinetic analysis</subject><subject>Kinetic theory</subject><subject>Medical Imaging</subject><subject>Motion</subject><subject>motion correction</subject><subject>Motion simulation</subject><subject>PET reconstruction</subject><subject>Phantoms, Imaging</subject><subject>Photonics</subject><subject>Photons</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Raclopride</subject><subject>Tomography</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpdkc9v0zAcxS0EYmVwR0JCkbjAId3368Q_chxtYUOdmFAR3CzHcTRPTTxsB2n_PQ4tPXCy_fx5T1_7EfIaYYkIzcXu5npJAfmSsqZGBk_IAhmTJWX1z6dkAVTIEoDTM_IixnsArBk0z8kZFUxwWlcLYtYuWJOKWx30YFNwpvhmjR9jCpNJzo_FD5fuii_ejam48X-VTUxu0PP2YuXDbJ_V3odi_TjqIUd8DNqNxe1mV6x10i_Js17vo311XM_J90-b3eqq3H79fL263JamFpBKQ9u2Mby2Le16LTuu-45TJmpJddeDrFg-UWyBcyaZNgia1h3qhsqKY9dV5-TDIfdO79VDyDOGR-W1U1eXWzVrgJIKbMRvzOz7A_sQ_K_JxqQGF43d7_Vo_RQVSsZZA7JuMvruP_TeT2HML5mp_JGiApEpOFAm-BiD7U8TIKi5LJXLUnNZ6lhWtrw9Bk_tYLuT4V87GXhzAJy19nQtGEOsaPUHP0SWgw</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Jieqing Jiao</creator><creator>Bousse, Alexandre</creator><creator>Thielemans, Kris</creator><creator>Burgos, Ninon</creator><creator>Weston, Philip S. J.</creator><creator>Schott, Jonathan M.</creator><creator>Atkinson, David</creator><creator>Arridge, Simon R.</creator><creator>Hutton, Brian F.</creator><creator>Markiewicz, Pawel</creator><creator>Ourselin, Sebastien</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4668-2006</orcidid></search><sort><creationdate>201701</creationdate><title>Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data</title><author>Jieqing Jiao ; Bousse, Alexandre ; Thielemans, Kris ; Burgos, Ninon ; Weston, Philip S. J. ; Schott, Jonathan M. ; Atkinson, David ; Arridge, Simon R. ; Hutton, Brian F. ; Markiewicz, Pawel ; Ourselin, Sebastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-c2bb9c64eb2dfa8d6afd6257482adf083562521b066585ac10a24d1a928361dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Attenuation</topic><topic>Biomedical imaging</topic><topic>Brain</topic><topic>Computer Science</topic><topic>Dynamic PET</topic><topic>Dynamics</topic><topic>Emission analysis</topic><topic>Estimation</topic><topic>Head movement</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image reconstruction</topic><topic>kinetic analysis</topic><topic>Kinetic theory</topic><topic>Medical Imaging</topic><topic>Motion</topic><topic>motion correction</topic><topic>Motion simulation</topic><topic>PET reconstruction</topic><topic>Phantoms, Imaging</topic><topic>Photonics</topic><topic>Photons</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Raclopride</topic><topic>Tomography</topic><toplevel>online_resources</toplevel><creatorcontrib>Jieqing Jiao</creatorcontrib><creatorcontrib>Bousse, Alexandre</creatorcontrib><creatorcontrib>Thielemans, Kris</creatorcontrib><creatorcontrib>Burgos, Ninon</creatorcontrib><creatorcontrib>Weston, Philip S. J.</creatorcontrib><creatorcontrib>Schott, Jonathan M.</creatorcontrib><creatorcontrib>Atkinson, David</creatorcontrib><creatorcontrib>Arridge, Simon R.</creatorcontrib><creatorcontrib>Hutton, Brian F.</creatorcontrib><creatorcontrib>Markiewicz, Pawel</creatorcontrib><creatorcontrib>Ourselin, Sebastien</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jieqing Jiao</au><au>Bousse, Alexandre</au><au>Thielemans, Kris</au><au>Burgos, Ninon</au><au>Weston, Philip S. J.</au><au>Schott, Jonathan M.</au><au>Atkinson, David</au><au>Arridge, Simon R.</au><au>Hutton, Brian F.</au><au>Markiewicz, Pawel</au><au>Ourselin, Sebastien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2017-01</date><risdate>2017</risdate><volume>36</volume><issue>1</issue><spage>203</spage><epage>213</epage><pages>203-213</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propose a framework to jointly estimate subject head motion and reconstruct the motion-corrected parametric images directly from raw PET data, so that the effects of distorted tissue-to-voxel mapping due to subject motion can be reduced in reconstructing the parametric images with motion-compensated attenuation correction and spatially aligned temporal PET data. The proposed approach is formulated within the maximum likelihood framework, and efficient solutions are derived for estimating subject motion and kinetic parameters from raw PET photon count data. Results from evaluations on simulated [ 11 C]raclopride data using the Zubal brain phantom and real clinical [ 18 F]florbetapir data of a patient with Alzheimer's disease show that the proposed joint direct parametric reconstruction motion correction approach can improve the accuracy of quantifying dynamic PET data with large subject motion.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27576243</pmid><doi>10.1109/TMI.2016.2594150</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4668-2006</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2017-01, Vol.36 (1), p.203-213
issn 0278-0062
1558-254X
language eng
recordid cdi_crossref_primary_10_1109_TMI_2016_2594150
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Alzheimer's disease
Attenuation
Biomedical imaging
Brain
Computer Science
Dynamic PET
Dynamics
Emission analysis
Estimation
Head movement
Humans
Image Processing, Computer-Assisted
Image reconstruction
kinetic analysis
Kinetic theory
Medical Imaging
Motion
motion correction
Motion simulation
PET reconstruction
Phantoms, Imaging
Photonics
Photons
Positron emission
Positron emission tomography
Raclopride
Tomography
title Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Parametric%20Reconstruction%20With%20Joint%20Motion%20Estimation/Correction%20for%20Dynamic%20Brain%20PET%20Data&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Jieqing%20Jiao&rft.date=2017-01&rft.volume=36&rft.issue=1&rft.spage=203&rft.epage=213&rft.pages=203-213&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2016.2594150&rft_dat=%3Cproquest_cross%3E1856590849%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-c2bb9c64eb2dfa8d6afd6257482adf083562521b066585ac10a24d1a928361dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1855767307&rft_id=info:pmid/27576243&rft_ieee_id=7551132&rfr_iscdi=true