Loading…
Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data
Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propo...
Saved in:
Published in: | IEEE transactions on medical imaging 2017-01, Vol.36 (1), p.203-213 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c470t-c2bb9c64eb2dfa8d6afd6257482adf083562521b066585ac10a24d1a928361dd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c470t-c2bb9c64eb2dfa8d6afd6257482adf083562521b066585ac10a24d1a928361dd3 |
container_end_page | 213 |
container_issue | 1 |
container_start_page | 203 |
container_title | IEEE transactions on medical imaging |
container_volume | 36 |
creator | Jieqing Jiao Bousse, Alexandre Thielemans, Kris Burgos, Ninon Weston, Philip S. J. Schott, Jonathan M. Atkinson, David Arridge, Simon R. Hutton, Brian F. Markiewicz, Pawel Ourselin, Sebastien |
description | Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propose a framework to jointly estimate subject head motion and reconstruct the motion-corrected parametric images directly from raw PET data, so that the effects of distorted tissue-to-voxel mapping due to subject motion can be reduced in reconstructing the parametric images with motion-compensated attenuation correction and spatially aligned temporal PET data. The proposed approach is formulated within the maximum likelihood framework, and efficient solutions are derived for estimating subject motion and kinetic parameters from raw PET photon count data. Results from evaluations on simulated [ 11 C]raclopride data using the Zubal brain phantom and real clinical [ 18 F]florbetapir data of a patient with Alzheimer's disease show that the proposed joint direct parametric reconstruction motion correction approach can improve the accuracy of quantifying dynamic PET data with large subject motion. |
doi_str_mv | 10.1109/TMI.2016.2594150 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMI_2016_2594150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7551132</ieee_id><sourcerecordid>1856590849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-c2bb9c64eb2dfa8d6afd6257482adf083562521b066585ac10a24d1a928361dd3</originalsourceid><addsrcrecordid>eNpdkc9v0zAcxS0EYmVwR0JCkbjAId3368Q_chxtYUOdmFAR3CzHcTRPTTxsB2n_PQ4tPXCy_fx5T1_7EfIaYYkIzcXu5npJAfmSsqZGBk_IAhmTJWX1z6dkAVTIEoDTM_IixnsArBk0z8kZFUxwWlcLYtYuWJOKWx30YFNwpvhmjR9jCpNJzo_FD5fuii_ejam48X-VTUxu0PP2YuXDbJ_V3odi_TjqIUd8DNqNxe1mV6x10i_Js17vo311XM_J90-b3eqq3H79fL263JamFpBKQ9u2Mby2Le16LTuu-45TJmpJddeDrFg-UWyBcyaZNgia1h3qhsqKY9dV5-TDIfdO79VDyDOGR-W1U1eXWzVrgJIKbMRvzOz7A_sQ_K_JxqQGF43d7_Vo_RQVSsZZA7JuMvruP_TeT2HML5mp_JGiApEpOFAm-BiD7U8TIKi5LJXLUnNZ6lhWtrw9Bk_tYLuT4V87GXhzAJy19nQtGEOsaPUHP0SWgw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855767307</pqid></control><display><type>article</type><title>Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jieqing Jiao ; Bousse, Alexandre ; Thielemans, Kris ; Burgos, Ninon ; Weston, Philip S. J. ; Schott, Jonathan M. ; Atkinson, David ; Arridge, Simon R. ; Hutton, Brian F. ; Markiewicz, Pawel ; Ourselin, Sebastien</creator><creatorcontrib>Jieqing Jiao ; Bousse, Alexandre ; Thielemans, Kris ; Burgos, Ninon ; Weston, Philip S. J. ; Schott, Jonathan M. ; Atkinson, David ; Arridge, Simon R. ; Hutton, Brian F. ; Markiewicz, Pawel ; Ourselin, Sebastien</creatorcontrib><description>Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propose a framework to jointly estimate subject head motion and reconstruct the motion-corrected parametric images directly from raw PET data, so that the effects of distorted tissue-to-voxel mapping due to subject motion can be reduced in reconstructing the parametric images with motion-compensated attenuation correction and spatially aligned temporal PET data. The proposed approach is formulated within the maximum likelihood framework, and efficient solutions are derived for estimating subject motion and kinetic parameters from raw PET photon count data. Results from evaluations on simulated [ 11 C]raclopride data using the Zubal brain phantom and real clinical [ 18 F]florbetapir data of a patient with Alzheimer's disease show that the proposed joint direct parametric reconstruction motion correction approach can improve the accuracy of quantifying dynamic PET data with large subject motion.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2016.2594150</identifier><identifier>PMID: 27576243</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Alzheimer's disease ; Attenuation ; Biomedical imaging ; Brain ; Computer Science ; Dynamic PET ; Dynamics ; Emission analysis ; Estimation ; Head movement ; Humans ; Image Processing, Computer-Assisted ; Image reconstruction ; kinetic analysis ; Kinetic theory ; Medical Imaging ; Motion ; motion correction ; Motion simulation ; PET reconstruction ; Phantoms, Imaging ; Photonics ; Photons ; Positron emission ; Positron emission tomography ; Raclopride ; Tomography</subject><ispartof>IEEE transactions on medical imaging, 2017-01, Vol.36 (1), p.203-213</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-c2bb9c64eb2dfa8d6afd6257482adf083562521b066585ac10a24d1a928361dd3</citedby><cites>FETCH-LOGICAL-c470t-c2bb9c64eb2dfa8d6afd6257482adf083562521b066585ac10a24d1a928361dd3</cites><orcidid>0000-0002-4668-2006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7551132$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27576243$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-01827197$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jieqing Jiao</creatorcontrib><creatorcontrib>Bousse, Alexandre</creatorcontrib><creatorcontrib>Thielemans, Kris</creatorcontrib><creatorcontrib>Burgos, Ninon</creatorcontrib><creatorcontrib>Weston, Philip S. J.</creatorcontrib><creatorcontrib>Schott, Jonathan M.</creatorcontrib><creatorcontrib>Atkinson, David</creatorcontrib><creatorcontrib>Arridge, Simon R.</creatorcontrib><creatorcontrib>Hutton, Brian F.</creatorcontrib><creatorcontrib>Markiewicz, Pawel</creatorcontrib><creatorcontrib>Ourselin, Sebastien</creatorcontrib><title>Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propose a framework to jointly estimate subject head motion and reconstruct the motion-corrected parametric images directly from raw PET data, so that the effects of distorted tissue-to-voxel mapping due to subject motion can be reduced in reconstructing the parametric images with motion-compensated attenuation correction and spatially aligned temporal PET data. The proposed approach is formulated within the maximum likelihood framework, and efficient solutions are derived for estimating subject motion and kinetic parameters from raw PET photon count data. Results from evaluations on simulated [ 11 C]raclopride data using the Zubal brain phantom and real clinical [ 18 F]florbetapir data of a patient with Alzheimer's disease show that the proposed joint direct parametric reconstruction motion correction approach can improve the accuracy of quantifying dynamic PET data with large subject motion.</description><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Attenuation</subject><subject>Biomedical imaging</subject><subject>Brain</subject><subject>Computer Science</subject><subject>Dynamic PET</subject><subject>Dynamics</subject><subject>Emission analysis</subject><subject>Estimation</subject><subject>Head movement</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image reconstruction</subject><subject>kinetic analysis</subject><subject>Kinetic theory</subject><subject>Medical Imaging</subject><subject>Motion</subject><subject>motion correction</subject><subject>Motion simulation</subject><subject>PET reconstruction</subject><subject>Phantoms, Imaging</subject><subject>Photonics</subject><subject>Photons</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Raclopride</subject><subject>Tomography</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpdkc9v0zAcxS0EYmVwR0JCkbjAId3368Q_chxtYUOdmFAR3CzHcTRPTTxsB2n_PQ4tPXCy_fx5T1_7EfIaYYkIzcXu5npJAfmSsqZGBk_IAhmTJWX1z6dkAVTIEoDTM_IixnsArBk0z8kZFUxwWlcLYtYuWJOKWx30YFNwpvhmjR9jCpNJzo_FD5fuii_ejam48X-VTUxu0PP2YuXDbJ_V3odi_TjqIUd8DNqNxe1mV6x10i_Js17vo311XM_J90-b3eqq3H79fL263JamFpBKQ9u2Mby2Le16LTuu-45TJmpJddeDrFg-UWyBcyaZNgia1h3qhsqKY9dV5-TDIfdO79VDyDOGR-W1U1eXWzVrgJIKbMRvzOz7A_sQ_K_JxqQGF43d7_Vo_RQVSsZZA7JuMvruP_TeT2HML5mp_JGiApEpOFAm-BiD7U8TIKi5LJXLUnNZ6lhWtrw9Bk_tYLuT4V87GXhzAJy19nQtGEOsaPUHP0SWgw</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Jieqing Jiao</creator><creator>Bousse, Alexandre</creator><creator>Thielemans, Kris</creator><creator>Burgos, Ninon</creator><creator>Weston, Philip S. J.</creator><creator>Schott, Jonathan M.</creator><creator>Atkinson, David</creator><creator>Arridge, Simon R.</creator><creator>Hutton, Brian F.</creator><creator>Markiewicz, Pawel</creator><creator>Ourselin, Sebastien</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4668-2006</orcidid></search><sort><creationdate>201701</creationdate><title>Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data</title><author>Jieqing Jiao ; Bousse, Alexandre ; Thielemans, Kris ; Burgos, Ninon ; Weston, Philip S. J. ; Schott, Jonathan M. ; Atkinson, David ; Arridge, Simon R. ; Hutton, Brian F. ; Markiewicz, Pawel ; Ourselin, Sebastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-c2bb9c64eb2dfa8d6afd6257482adf083562521b066585ac10a24d1a928361dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Attenuation</topic><topic>Biomedical imaging</topic><topic>Brain</topic><topic>Computer Science</topic><topic>Dynamic PET</topic><topic>Dynamics</topic><topic>Emission analysis</topic><topic>Estimation</topic><topic>Head movement</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image reconstruction</topic><topic>kinetic analysis</topic><topic>Kinetic theory</topic><topic>Medical Imaging</topic><topic>Motion</topic><topic>motion correction</topic><topic>Motion simulation</topic><topic>PET reconstruction</topic><topic>Phantoms, Imaging</topic><topic>Photonics</topic><topic>Photons</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Raclopride</topic><topic>Tomography</topic><toplevel>online_resources</toplevel><creatorcontrib>Jieqing Jiao</creatorcontrib><creatorcontrib>Bousse, Alexandre</creatorcontrib><creatorcontrib>Thielemans, Kris</creatorcontrib><creatorcontrib>Burgos, Ninon</creatorcontrib><creatorcontrib>Weston, Philip S. J.</creatorcontrib><creatorcontrib>Schott, Jonathan M.</creatorcontrib><creatorcontrib>Atkinson, David</creatorcontrib><creatorcontrib>Arridge, Simon R.</creatorcontrib><creatorcontrib>Hutton, Brian F.</creatorcontrib><creatorcontrib>Markiewicz, Pawel</creatorcontrib><creatorcontrib>Ourselin, Sebastien</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jieqing Jiao</au><au>Bousse, Alexandre</au><au>Thielemans, Kris</au><au>Burgos, Ninon</au><au>Weston, Philip S. J.</au><au>Schott, Jonathan M.</au><au>Atkinson, David</au><au>Arridge, Simon R.</au><au>Hutton, Brian F.</au><au>Markiewicz, Pawel</au><au>Ourselin, Sebastien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2017-01</date><risdate>2017</risdate><volume>36</volume><issue>1</issue><spage>203</spage><epage>213</epage><pages>203-213</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propose a framework to jointly estimate subject head motion and reconstruct the motion-corrected parametric images directly from raw PET data, so that the effects of distorted tissue-to-voxel mapping due to subject motion can be reduced in reconstructing the parametric images with motion-compensated attenuation correction and spatially aligned temporal PET data. The proposed approach is formulated within the maximum likelihood framework, and efficient solutions are derived for estimating subject motion and kinetic parameters from raw PET photon count data. Results from evaluations on simulated [ 11 C]raclopride data using the Zubal brain phantom and real clinical [ 18 F]florbetapir data of a patient with Alzheimer's disease show that the proposed joint direct parametric reconstruction motion correction approach can improve the accuracy of quantifying dynamic PET data with large subject motion.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27576243</pmid><doi>10.1109/TMI.2016.2594150</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4668-2006</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2017-01, Vol.36 (1), p.203-213 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMI_2016_2594150 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Alzheimer's disease Attenuation Biomedical imaging Brain Computer Science Dynamic PET Dynamics Emission analysis Estimation Head movement Humans Image Processing, Computer-Assisted Image reconstruction kinetic analysis Kinetic theory Medical Imaging Motion motion correction Motion simulation PET reconstruction Phantoms, Imaging Photonics Photons Positron emission Positron emission tomography Raclopride Tomography |
title | Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Parametric%20Reconstruction%20With%20Joint%20Motion%20Estimation/Correction%20for%20Dynamic%20Brain%20PET%20Data&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Jieqing%20Jiao&rft.date=2017-01&rft.volume=36&rft.issue=1&rft.spage=203&rft.epage=213&rft.pages=203-213&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2016.2594150&rft_dat=%3Cproquest_cross%3E1856590849%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-c2bb9c64eb2dfa8d6afd6257482adf083562521b066585ac10a24d1a928361dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1855767307&rft_id=info:pmid/27576243&rft_ieee_id=7551132&rfr_iscdi=true |