Loading…

A Spectral CT Method to Directly Estimate Basis Material Maps From Experimental Photon-Counting Data

The proposed spectral CT method solves the constrained one-step spectral CT reconstruction (cOSSCIR) optimization problem to estimate basis material maps while modeling the nonlinear X-ray detection process and enforcing convex constraints on the basis map images. In order to apply the optimization-...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2017-09, Vol.36 (9), p.1808-1819
Main Authors: Schmidt, Taly Gilat, Barber, Rina Foygel, Sidky, Emil Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c557t-ab2ac3092461c250d786cee1f261d80e5d44a352f8b61a6e7510edceddacb7453
cites cdi_FETCH-LOGICAL-c557t-ab2ac3092461c250d786cee1f261d80e5d44a352f8b61a6e7510edceddacb7453
container_end_page 1819
container_issue 9
container_start_page 1808
container_title IEEE transactions on medical imaging
container_volume 36
creator Schmidt, Taly Gilat
Barber, Rina Foygel
Sidky, Emil Y.
description The proposed spectral CT method solves the constrained one-step spectral CT reconstruction (cOSSCIR) optimization problem to estimate basis material maps while modeling the nonlinear X-ray detection process and enforcing convex constraints on the basis map images. In order to apply the optimization-based reconstruction approach to experimental data, the presented method empirically estimates the effective energy-window spectra using a calibration procedure. The amplitudes of the estimated spectra were further optimized as part of the reconstruction process to reduce ring artifacts. A validation approach was developed to select constraint parameters. The proposed spectral CT method was evaluated through simulations and experiments with a photon-counting detector. Basis material map images were successfully reconstructed using the presented empirical spectral modeling and cOSSCIR optimization approach. In simulations, the cOSSCIR approach accurately reconstructed the basis map images (
doi_str_mv 10.1109/TMI.2017.2696338
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMI_2017_2696338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7906625</ieee_id><sourcerecordid>1891454848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-ab2ac3092461c250d786cee1f261d80e5d44a352f8b61a6e7510edceddacb7453</originalsourceid><addsrcrecordid>eNpdkdGLEzEQxoMoXj19FwQJ-HIvWyfZJJt9Ec5eTw-uKFjBt5Bmp9c9djdrkpW7_96U1qI-JXzzm4-Z-Qh5zWDOGNTv16ubOQdWzbmqVVnqJ2TGpNQFl-LHUzIDXukCQPEz8iLGewAmJNTPyRnXolRa6hlpLum3EV0KtqOLNV1h2vmGJk-v2pDl7pEuY2p7m5B-tLGNdJW_oc30yo6RXgff0-XDmKUeh5Tlrzuf_FAs_DSkdrijVzbZl-TZ1nYRXx3fc_L9erlefC5uv3y6WVzeFk7KKhV2w60roeZCMcclNJVWDpFtuWKNBpSNELaUfKs3ilmFlWSAjcOmsW5TCVmekw8H33Ha9PvKsN_LjHk4Gx6Nt635tzK0O3PnfxmpQIhSZIOLo0HwPyeMyfRtdNh1dkA_RcN0nU8otNAZffcfeu-nMOT1DGeVELwGzjIFB8oFH2PA7WkYBmYfockRmn2E5hhhbnn79xKnhj-ZZeDNAWgR8VSualCKy_I3lu2gdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174429021</pqid></control><display><type>article</type><title>A Spectral CT Method to Directly Estimate Basis Material Maps From Experimental Photon-Counting Data</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Schmidt, Taly Gilat ; Barber, Rina Foygel ; Sidky, Emil Y.</creator><creatorcontrib>Schmidt, Taly Gilat ; Barber, Rina Foygel ; Sidky, Emil Y.</creatorcontrib><description>The proposed spectral CT method solves the constrained one-step spectral CT reconstruction (cOSSCIR) optimization problem to estimate basis material maps while modeling the nonlinear X-ray detection process and enforcing convex constraints on the basis map images. In order to apply the optimization-based reconstruction approach to experimental data, the presented method empirically estimates the effective energy-window spectra using a calibration procedure. The amplitudes of the estimated spectra were further optimized as part of the reconstruction process to reduce ring artifacts. A validation approach was developed to select constraint parameters. The proposed spectral CT method was evaluated through simulations and experiments with a photon-counting detector. Basis material map images were successfully reconstructed using the presented empirical spectral modeling and cOSSCIR optimization approach. In simulations, the cOSSCIR approach accurately reconstructed the basis map images (&lt;;1% error). In experiments, the proposed method estimated the low-density polyethylene region of the basis maps with 0.5% error in the PMMA image and 4% error in the aluminum image. For the Teflon region, the experimental results demonstrated 8% and 31% error in the PMMA and aluminum basis material maps, respectively, compared with -24% and 126% error without estimation of the effective energy window spectra, with residual errors likely due to insufficient modeling of detector effects. The cOSSCIR algorithm estimated the material decomposition angle to within 1.3 degree error, where, for reference, the difference in angle between PMMA and muscle tissue is 2.1 degrees. The joint estimation of spectral-response scaling coefficients and basis material maps was found to reduce ring artifacts in both a phantom and tissue specimen. The presented validation procedure demonstrated feasibility for the automated determination of algorithm constraint parameters.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2017.2696338</identifier><identifier>PMID: 28436858</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Aluminum ; Calibration ; Computed tomography ; Computer simulation ; Data models ; Detectors ; Energy measurement ; Errors ; Feasibility studies ; Image detection ; Image reconstruction ; Iterative reconstruction ; Low density polyethylenes ; material decomposition ; Mathematical models ; Modelling ; Muscles ; Optimization ; Parameters ; Phantoms, Imaging ; photon-counting ; Photonics ; Photons ; Polyethylene ; Polymethyl methacrylate ; Polymethylmethacrylate ; Polytetrafluoroethylene ; Scaling ; Spectra ; spectral CT ; Tissues ; Tomography, X-Ray Computed ; X-Rays</subject><ispartof>IEEE transactions on medical imaging, 2017-09, Vol.36 (9), p.1808-1819</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-ab2ac3092461c250d786cee1f261d80e5d44a352f8b61a6e7510edceddacb7453</citedby><cites>FETCH-LOGICAL-c557t-ab2ac3092461c250d786cee1f261d80e5d44a352f8b61a6e7510edceddacb7453</cites><orcidid>0000-0002-9840-0963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7906625$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28436858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmidt, Taly Gilat</creatorcontrib><creatorcontrib>Barber, Rina Foygel</creatorcontrib><creatorcontrib>Sidky, Emil Y.</creatorcontrib><title>A Spectral CT Method to Directly Estimate Basis Material Maps From Experimental Photon-Counting Data</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>The proposed spectral CT method solves the constrained one-step spectral CT reconstruction (cOSSCIR) optimization problem to estimate basis material maps while modeling the nonlinear X-ray detection process and enforcing convex constraints on the basis map images. In order to apply the optimization-based reconstruction approach to experimental data, the presented method empirically estimates the effective energy-window spectra using a calibration procedure. The amplitudes of the estimated spectra were further optimized as part of the reconstruction process to reduce ring artifacts. A validation approach was developed to select constraint parameters. The proposed spectral CT method was evaluated through simulations and experiments with a photon-counting detector. Basis material map images were successfully reconstructed using the presented empirical spectral modeling and cOSSCIR optimization approach. In simulations, the cOSSCIR approach accurately reconstructed the basis map images (&lt;;1% error). In experiments, the proposed method estimated the low-density polyethylene region of the basis maps with 0.5% error in the PMMA image and 4% error in the aluminum image. For the Teflon region, the experimental results demonstrated 8% and 31% error in the PMMA and aluminum basis material maps, respectively, compared with -24% and 126% error without estimation of the effective energy window spectra, with residual errors likely due to insufficient modeling of detector effects. The cOSSCIR algorithm estimated the material decomposition angle to within 1.3 degree error, where, for reference, the difference in angle between PMMA and muscle tissue is 2.1 degrees. The joint estimation of spectral-response scaling coefficients and basis material maps was found to reduce ring artifacts in both a phantom and tissue specimen. The presented validation procedure demonstrated feasibility for the automated determination of algorithm constraint parameters.</description><subject>Algorithms</subject><subject>Aluminum</subject><subject>Calibration</subject><subject>Computed tomography</subject><subject>Computer simulation</subject><subject>Data models</subject><subject>Detectors</subject><subject>Energy measurement</subject><subject>Errors</subject><subject>Feasibility studies</subject><subject>Image detection</subject><subject>Image reconstruction</subject><subject>Iterative reconstruction</subject><subject>Low density polyethylenes</subject><subject>material decomposition</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Muscles</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Phantoms, Imaging</subject><subject>photon-counting</subject><subject>Photonics</subject><subject>Photons</subject><subject>Polyethylene</subject><subject>Polymethyl methacrylate</subject><subject>Polymethylmethacrylate</subject><subject>Polytetrafluoroethylene</subject><subject>Scaling</subject><subject>Spectra</subject><subject>spectral CT</subject><subject>Tissues</subject><subject>Tomography, X-Ray Computed</subject><subject>X-Rays</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkdGLEzEQxoMoXj19FwQJ-HIvWyfZJJt9Ec5eTw-uKFjBt5Bmp9c9djdrkpW7_96U1qI-JXzzm4-Z-Qh5zWDOGNTv16ubOQdWzbmqVVnqJ2TGpNQFl-LHUzIDXukCQPEz8iLGewAmJNTPyRnXolRa6hlpLum3EV0KtqOLNV1h2vmGJk-v2pDl7pEuY2p7m5B-tLGNdJW_oc30yo6RXgff0-XDmKUeh5Tlrzuf_FAs_DSkdrijVzbZl-TZ1nYRXx3fc_L9erlefC5uv3y6WVzeFk7KKhV2w60roeZCMcclNJVWDpFtuWKNBpSNELaUfKs3ilmFlWSAjcOmsW5TCVmekw8H33Ha9PvKsN_LjHk4Gx6Nt635tzK0O3PnfxmpQIhSZIOLo0HwPyeMyfRtdNh1dkA_RcN0nU8otNAZffcfeu-nMOT1DGeVELwGzjIFB8oFH2PA7WkYBmYfockRmn2E5hhhbnn79xKnhj-ZZeDNAWgR8VSualCKy_I3lu2gdQ</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Schmidt, Taly Gilat</creator><creator>Barber, Rina Foygel</creator><creator>Sidky, Emil Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9840-0963</orcidid></search><sort><creationdate>20170901</creationdate><title>A Spectral CT Method to Directly Estimate Basis Material Maps From Experimental Photon-Counting Data</title><author>Schmidt, Taly Gilat ; Barber, Rina Foygel ; Sidky, Emil Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-ab2ac3092461c250d786cee1f261d80e5d44a352f8b61a6e7510edceddacb7453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Aluminum</topic><topic>Calibration</topic><topic>Computed tomography</topic><topic>Computer simulation</topic><topic>Data models</topic><topic>Detectors</topic><topic>Energy measurement</topic><topic>Errors</topic><topic>Feasibility studies</topic><topic>Image detection</topic><topic>Image reconstruction</topic><topic>Iterative reconstruction</topic><topic>Low density polyethylenes</topic><topic>material decomposition</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Muscles</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Phantoms, Imaging</topic><topic>photon-counting</topic><topic>Photonics</topic><topic>Photons</topic><topic>Polyethylene</topic><topic>Polymethyl methacrylate</topic><topic>Polymethylmethacrylate</topic><topic>Polytetrafluoroethylene</topic><topic>Scaling</topic><topic>Spectra</topic><topic>spectral CT</topic><topic>Tissues</topic><topic>Tomography, X-Ray Computed</topic><topic>X-Rays</topic><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, Taly Gilat</creatorcontrib><creatorcontrib>Barber, Rina Foygel</creatorcontrib><creatorcontrib>Sidky, Emil Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt, Taly Gilat</au><au>Barber, Rina Foygel</au><au>Sidky, Emil Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Spectral CT Method to Directly Estimate Basis Material Maps From Experimental Photon-Counting Data</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>36</volume><issue>9</issue><spage>1808</spage><epage>1819</epage><pages>1808-1819</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>The proposed spectral CT method solves the constrained one-step spectral CT reconstruction (cOSSCIR) optimization problem to estimate basis material maps while modeling the nonlinear X-ray detection process and enforcing convex constraints on the basis map images. In order to apply the optimization-based reconstruction approach to experimental data, the presented method empirically estimates the effective energy-window spectra using a calibration procedure. The amplitudes of the estimated spectra were further optimized as part of the reconstruction process to reduce ring artifacts. A validation approach was developed to select constraint parameters. The proposed spectral CT method was evaluated through simulations and experiments with a photon-counting detector. Basis material map images were successfully reconstructed using the presented empirical spectral modeling and cOSSCIR optimization approach. In simulations, the cOSSCIR approach accurately reconstructed the basis map images (&lt;;1% error). In experiments, the proposed method estimated the low-density polyethylene region of the basis maps with 0.5% error in the PMMA image and 4% error in the aluminum image. For the Teflon region, the experimental results demonstrated 8% and 31% error in the PMMA and aluminum basis material maps, respectively, compared with -24% and 126% error without estimation of the effective energy window spectra, with residual errors likely due to insufficient modeling of detector effects. The cOSSCIR algorithm estimated the material decomposition angle to within 1.3 degree error, where, for reference, the difference in angle between PMMA and muscle tissue is 2.1 degrees. The joint estimation of spectral-response scaling coefficients and basis material maps was found to reduce ring artifacts in both a phantom and tissue specimen. The presented validation procedure demonstrated feasibility for the automated determination of algorithm constraint parameters.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28436858</pmid><doi>10.1109/TMI.2017.2696338</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9840-0963</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2017-09, Vol.36 (9), p.1808-1819
issn 0278-0062
1558-254X
language eng
recordid cdi_crossref_primary_10_1109_TMI_2017_2696338
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Aluminum
Calibration
Computed tomography
Computer simulation
Data models
Detectors
Energy measurement
Errors
Feasibility studies
Image detection
Image reconstruction
Iterative reconstruction
Low density polyethylenes
material decomposition
Mathematical models
Modelling
Muscles
Optimization
Parameters
Phantoms, Imaging
photon-counting
Photonics
Photons
Polyethylene
Polymethyl methacrylate
Polymethylmethacrylate
Polytetrafluoroethylene
Scaling
Spectra
spectral CT
Tissues
Tomography, X-Ray Computed
X-Rays
title A Spectral CT Method to Directly Estimate Basis Material Maps From Experimental Photon-Counting Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Spectral%20CT%20Method%20to%20Directly%20Estimate%20Basis%20Material%20Maps%20From%20Experimental%20Photon-Counting%20Data&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Schmidt,%20Taly%20Gilat&rft.date=2017-09-01&rft.volume=36&rft.issue=9&rft.spage=1808&rft.epage=1819&rft.pages=1808-1819&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2017.2696338&rft_dat=%3Cproquest_cross%3E1891454848%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c557t-ab2ac3092461c250d786cee1f261d80e5d44a352f8b61a6e7510edceddacb7453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174429021&rft_id=info:pmid/28436858&rft_ieee_id=7906625&rfr_iscdi=true