Loading…

A Novel Method for Low-Contrast and High-Noise Vessel Segmentation and Location in Venipuncture

Blood sampling is the most common medical technique, and vessel detection is of crucial interest for automated venipuncture systems. In this paper, we propose a new convex-regional-based gradient model that uses contextually related regional information, including vessel width size and gray distribu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2017-11, Vol.36 (11), p.2216-2227
Main Authors: Li, Yuhe, Qiao, Zhendong, Zhang, Shaoqin, Wu, Zhenhuan, Mao, Xueqin, Kou, Jiahua, Qi, Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-c11e56d85cb9e5d9f5343d6a78604732c5f904b7ebe5a13e8f4053c08cb1b32d3
cites cdi_FETCH-LOGICAL-c347t-c11e56d85cb9e5d9f5343d6a78604732c5f904b7ebe5a13e8f4053c08cb1b32d3
container_end_page 2227
container_issue 11
container_start_page 2216
container_title IEEE transactions on medical imaging
container_volume 36
creator Li, Yuhe
Qiao, Zhendong
Zhang, Shaoqin
Wu, Zhenhuan
Mao, Xueqin
Kou, Jiahua
Qi, Hong
description Blood sampling is the most common medical technique, and vessel detection is of crucial interest for automated venipuncture systems. In this paper, we propose a new convex-regional-based gradient model that uses contextually related regional information, including vessel width size and gray distribution, to segment and locate vessels in a near-infrared image. A convex function with the interval size of vessel width is constructed and utilized for its edge-preserving superiority. Moreover, white and linear noise independences are derived. The region-based gradient decreases the number of local extreme in the cross-sectional profile of the vessel to realize its single global minimum in a low-contrast, noisy image. We demonstrate the performance of the proposed model via quantitative tests and comparisons between different methods. Results show the advantages of the model on the continuity and smoothness of segmented vessel. The proposed model is evaluated with receiver operating characteristic curves, which have a corresponding area under the curve of 88.8%. The proposed model will be a powerful method in automated venipuncture system and medical image analysis.
doi_str_mv 10.1109/TMI.2017.2732481
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMI_2017_2732481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7994671</ieee_id><sourcerecordid>2174427781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-c11e56d85cb9e5d9f5343d6a78604732c5f904b7ebe5a13e8f4053c08cb1b32d3</originalsourceid><addsrcrecordid>eNpdkE1PGzEQhq2qqElp75UqVSv10ssGjz_W9hFFUJACHKCIm7XrnU0WJXZq7xb13-OQwIHTaDTPO5p5CPkGdAZAzcnd1eWMUVAzpjgTGj6QKUipSybFw0cypUzpktKKTcjnlB4pBSGp-UQmTKtK8UpOiT0trsM_XBdXOKxCW3QhFovwVM6DH2KdhqL2bXHRL1fldegTFveYUqZvcblBP9RDH_wLsghu3_Q-M77fjt4NY8Qv5Kir1wm_Huox-XN-dje_KBc3vy_np4vScaGG0gGgrFotXWNQtqaTXPC2qpWuqMi_OdkZKhqFDcoaOOpOUMkd1a6BhrOWH5Nf-73bGP6OmAa76ZPD9br2GMZkwTCptTbAM_rzHfoYxujzdZaBEoIppSFTdE-5GFKK2Nlt7Dd1_G-B2p18m-XbnXx7kJ8jPw6Lx2aD7Vvg1XYGvu-BHhHfxsoYUSngz_UAhz0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174427781</pqid></control><display><type>article</type><title>A Novel Method for Low-Contrast and High-Noise Vessel Segmentation and Location in Venipuncture</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Yuhe ; Qiao, Zhendong ; Zhang, Shaoqin ; Wu, Zhenhuan ; Mao, Xueqin ; Kou, Jiahua ; Qi, Hong</creator><creatorcontrib>Li, Yuhe ; Qiao, Zhendong ; Zhang, Shaoqin ; Wu, Zhenhuan ; Mao, Xueqin ; Kou, Jiahua ; Qi, Hong</creatorcontrib><description>Blood sampling is the most common medical technique, and vessel detection is of crucial interest for automated venipuncture systems. In this paper, we propose a new convex-regional-based gradient model that uses contextually related regional information, including vessel width size and gray distribution, to segment and locate vessels in a near-infrared image. A convex function with the interval size of vessel width is constructed and utilized for its edge-preserving superiority. Moreover, white and linear noise independences are derived. The region-based gradient decreases the number of local extreme in the cross-sectional profile of the vessel to realize its single global minimum in a low-contrast, noisy image. We demonstrate the performance of the proposed model via quantitative tests and comparisons between different methods. Results show the advantages of the model on the continuity and smoothness of segmented vessel. The proposed model is evaluated with receiver operating characteristic curves, which have a corresponding area under the curve of 88.8%. The proposed model will be a powerful method in automated venipuncture system and medical image analysis.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2017.2732481</identifier><identifier>PMID: 28767365</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Automation ; Biomedical imaging ; Blood vessels ; Blood Vessels - diagnostic imaging ; Continuity (mathematics) ; convex function optimization ; Extreme values ; Humans ; Image analysis ; Image contrast ; Image edge detection ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Infrared imagery ; Medical imaging ; Model testing ; Noise ; noise independence ; Noise measurement ; Phlebotomy ; Phlebotomy - methods ; regional-gradient ; ROC Curve ; Smoothness ; Spectroscopy, Near-Infrared - methods ; Veins ; venipuncture system ; Vessel segmentation</subject><ispartof>IEEE transactions on medical imaging, 2017-11, Vol.36 (11), p.2216-2227</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-c11e56d85cb9e5d9f5343d6a78604732c5f904b7ebe5a13e8f4053c08cb1b32d3</citedby><cites>FETCH-LOGICAL-c347t-c11e56d85cb9e5d9f5343d6a78604732c5f904b7ebe5a13e8f4053c08cb1b32d3</cites><orcidid>0000-0002-4188-2228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7994671$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28767365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yuhe</creatorcontrib><creatorcontrib>Qiao, Zhendong</creatorcontrib><creatorcontrib>Zhang, Shaoqin</creatorcontrib><creatorcontrib>Wu, Zhenhuan</creatorcontrib><creatorcontrib>Mao, Xueqin</creatorcontrib><creatorcontrib>Kou, Jiahua</creatorcontrib><creatorcontrib>Qi, Hong</creatorcontrib><title>A Novel Method for Low-Contrast and High-Noise Vessel Segmentation and Location in Venipuncture</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Blood sampling is the most common medical technique, and vessel detection is of crucial interest for automated venipuncture systems. In this paper, we propose a new convex-regional-based gradient model that uses contextually related regional information, including vessel width size and gray distribution, to segment and locate vessels in a near-infrared image. A convex function with the interval size of vessel width is constructed and utilized for its edge-preserving superiority. Moreover, white and linear noise independences are derived. The region-based gradient decreases the number of local extreme in the cross-sectional profile of the vessel to realize its single global minimum in a low-contrast, noisy image. We demonstrate the performance of the proposed model via quantitative tests and comparisons between different methods. Results show the advantages of the model on the continuity and smoothness of segmented vessel. The proposed model is evaluated with receiver operating characteristic curves, which have a corresponding area under the curve of 88.8%. The proposed model will be a powerful method in automated venipuncture system and medical image analysis.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Biomedical imaging</subject><subject>Blood vessels</subject><subject>Blood Vessels - diagnostic imaging</subject><subject>Continuity (mathematics)</subject><subject>convex function optimization</subject><subject>Extreme values</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image contrast</subject><subject>Image edge detection</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Infrared imagery</subject><subject>Medical imaging</subject><subject>Model testing</subject><subject>Noise</subject><subject>noise independence</subject><subject>Noise measurement</subject><subject>Phlebotomy</subject><subject>Phlebotomy - methods</subject><subject>regional-gradient</subject><subject>ROC Curve</subject><subject>Smoothness</subject><subject>Spectroscopy, Near-Infrared - methods</subject><subject>Veins</subject><subject>venipuncture system</subject><subject>Vessel segmentation</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkE1PGzEQhq2qqElp75UqVSv10ssGjz_W9hFFUJACHKCIm7XrnU0WJXZq7xb13-OQwIHTaDTPO5p5CPkGdAZAzcnd1eWMUVAzpjgTGj6QKUipSybFw0cypUzpktKKTcjnlB4pBSGp-UQmTKtK8UpOiT0trsM_XBdXOKxCW3QhFovwVM6DH2KdhqL2bXHRL1fldegTFveYUqZvcblBP9RDH_wLsghu3_Q-M77fjt4NY8Qv5Kir1wm_Huox-XN-dje_KBc3vy_np4vScaGG0gGgrFotXWNQtqaTXPC2qpWuqMi_OdkZKhqFDcoaOOpOUMkd1a6BhrOWH5Nf-73bGP6OmAa76ZPD9br2GMZkwTCptTbAM_rzHfoYxujzdZaBEoIppSFTdE-5GFKK2Nlt7Dd1_G-B2p18m-XbnXx7kJ8jPw6Lx2aD7Vvg1XYGvu-BHhHfxsoYUSngz_UAhz0</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Li, Yuhe</creator><creator>Qiao, Zhendong</creator><creator>Zhang, Shaoqin</creator><creator>Wu, Zhenhuan</creator><creator>Mao, Xueqin</creator><creator>Kou, Jiahua</creator><creator>Qi, Hong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4188-2228</orcidid></search><sort><creationdate>20171101</creationdate><title>A Novel Method for Low-Contrast and High-Noise Vessel Segmentation and Location in Venipuncture</title><author>Li, Yuhe ; Qiao, Zhendong ; Zhang, Shaoqin ; Wu, Zhenhuan ; Mao, Xueqin ; Kou, Jiahua ; Qi, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-c11e56d85cb9e5d9f5343d6a78604732c5f904b7ebe5a13e8f4053c08cb1b32d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Biomedical imaging</topic><topic>Blood vessels</topic><topic>Blood Vessels - diagnostic imaging</topic><topic>Continuity (mathematics)</topic><topic>convex function optimization</topic><topic>Extreme values</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image contrast</topic><topic>Image edge detection</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Infrared imagery</topic><topic>Medical imaging</topic><topic>Model testing</topic><topic>Noise</topic><topic>noise independence</topic><topic>Noise measurement</topic><topic>Phlebotomy</topic><topic>Phlebotomy - methods</topic><topic>regional-gradient</topic><topic>ROC Curve</topic><topic>Smoothness</topic><topic>Spectroscopy, Near-Infrared - methods</topic><topic>Veins</topic><topic>venipuncture system</topic><topic>Vessel segmentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuhe</creatorcontrib><creatorcontrib>Qiao, Zhendong</creatorcontrib><creatorcontrib>Zhang, Shaoqin</creatorcontrib><creatorcontrib>Wu, Zhenhuan</creatorcontrib><creatorcontrib>Mao, Xueqin</creatorcontrib><creatorcontrib>Kou, Jiahua</creatorcontrib><creatorcontrib>Qi, Hong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yuhe</au><au>Qiao, Zhendong</au><au>Zhang, Shaoqin</au><au>Wu, Zhenhuan</au><au>Mao, Xueqin</au><au>Kou, Jiahua</au><au>Qi, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Method for Low-Contrast and High-Noise Vessel Segmentation and Location in Venipuncture</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>36</volume><issue>11</issue><spage>2216</spage><epage>2227</epage><pages>2216-2227</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Blood sampling is the most common medical technique, and vessel detection is of crucial interest for automated venipuncture systems. In this paper, we propose a new convex-regional-based gradient model that uses contextually related regional information, including vessel width size and gray distribution, to segment and locate vessels in a near-infrared image. A convex function with the interval size of vessel width is constructed and utilized for its edge-preserving superiority. Moreover, white and linear noise independences are derived. The region-based gradient decreases the number of local extreme in the cross-sectional profile of the vessel to realize its single global minimum in a low-contrast, noisy image. We demonstrate the performance of the proposed model via quantitative tests and comparisons between different methods. Results show the advantages of the model on the continuity and smoothness of segmented vessel. The proposed model is evaluated with receiver operating characteristic curves, which have a corresponding area under the curve of 88.8%. The proposed model will be a powerful method in automated venipuncture system and medical image analysis.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28767365</pmid><doi>10.1109/TMI.2017.2732481</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4188-2228</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2017-11, Vol.36 (11), p.2216-2227
issn 0278-0062
1558-254X
language eng
recordid cdi_crossref_primary_10_1109_TMI_2017_2732481
source IEEE Electronic Library (IEL) Journals
subjects Algorithm design and analysis
Algorithms
Automation
Biomedical imaging
Blood vessels
Blood Vessels - diagnostic imaging
Continuity (mathematics)
convex function optimization
Extreme values
Humans
Image analysis
Image contrast
Image edge detection
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Infrared imagery
Medical imaging
Model testing
Noise
noise independence
Noise measurement
Phlebotomy
Phlebotomy - methods
regional-gradient
ROC Curve
Smoothness
Spectroscopy, Near-Infrared - methods
Veins
venipuncture system
Vessel segmentation
title A Novel Method for Low-Contrast and High-Noise Vessel Segmentation and Location in Venipuncture
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Method%20for%20Low-Contrast%20and%20High-Noise%20Vessel%20Segmentation%20and%20Location%20in%20Venipuncture&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Li,%20Yuhe&rft.date=2017-11-01&rft.volume=36&rft.issue=11&rft.spage=2216&rft.epage=2227&rft.pages=2216-2227&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2017.2732481&rft_dat=%3Cproquest_cross%3E2174427781%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-c11e56d85cb9e5d9f5343d6a78604732c5f904b7ebe5a13e8f4053c08cb1b32d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174427781&rft_id=info:pmid/28767365&rft_ieee_id=7994671&rfr_iscdi=true