Loading…
A Novel Method for Low-Contrast and High-Noise Vessel Segmentation and Location in Venipuncture
Blood sampling is the most common medical technique, and vessel detection is of crucial interest for automated venipuncture systems. In this paper, we propose a new convex-regional-based gradient model that uses contextually related regional information, including vessel width size and gray distribu...
Saved in:
Published in: | IEEE transactions on medical imaging 2017-11, Vol.36 (11), p.2216-2227 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-c11e56d85cb9e5d9f5343d6a78604732c5f904b7ebe5a13e8f4053c08cb1b32d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c347t-c11e56d85cb9e5d9f5343d6a78604732c5f904b7ebe5a13e8f4053c08cb1b32d3 |
container_end_page | 2227 |
container_issue | 11 |
container_start_page | 2216 |
container_title | IEEE transactions on medical imaging |
container_volume | 36 |
creator | Li, Yuhe Qiao, Zhendong Zhang, Shaoqin Wu, Zhenhuan Mao, Xueqin Kou, Jiahua Qi, Hong |
description | Blood sampling is the most common medical technique, and vessel detection is of crucial interest for automated venipuncture systems. In this paper, we propose a new convex-regional-based gradient model that uses contextually related regional information, including vessel width size and gray distribution, to segment and locate vessels in a near-infrared image. A convex function with the interval size of vessel width is constructed and utilized for its edge-preserving superiority. Moreover, white and linear noise independences are derived. The region-based gradient decreases the number of local extreme in the cross-sectional profile of the vessel to realize its single global minimum in a low-contrast, noisy image. We demonstrate the performance of the proposed model via quantitative tests and comparisons between different methods. Results show the advantages of the model on the continuity and smoothness of segmented vessel. The proposed model is evaluated with receiver operating characteristic curves, which have a corresponding area under the curve of 88.8%. The proposed model will be a powerful method in automated venipuncture system and medical image analysis. |
doi_str_mv | 10.1109/TMI.2017.2732481 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMI_2017_2732481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7994671</ieee_id><sourcerecordid>2174427781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-c11e56d85cb9e5d9f5343d6a78604732c5f904b7ebe5a13e8f4053c08cb1b32d3</originalsourceid><addsrcrecordid>eNpdkE1PGzEQhq2qqElp75UqVSv10ssGjz_W9hFFUJACHKCIm7XrnU0WJXZq7xb13-OQwIHTaDTPO5p5CPkGdAZAzcnd1eWMUVAzpjgTGj6QKUipSybFw0cypUzpktKKTcjnlB4pBSGp-UQmTKtK8UpOiT0trsM_XBdXOKxCW3QhFovwVM6DH2KdhqL2bXHRL1fldegTFveYUqZvcblBP9RDH_wLsghu3_Q-M77fjt4NY8Qv5Kir1wm_Huox-XN-dje_KBc3vy_np4vScaGG0gGgrFotXWNQtqaTXPC2qpWuqMi_OdkZKhqFDcoaOOpOUMkd1a6BhrOWH5Nf-73bGP6OmAa76ZPD9br2GMZkwTCptTbAM_rzHfoYxujzdZaBEoIppSFTdE-5GFKK2Nlt7Dd1_G-B2p18m-XbnXx7kJ8jPw6Lx2aD7Vvg1XYGvu-BHhHfxsoYUSngz_UAhz0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174427781</pqid></control><display><type>article</type><title>A Novel Method for Low-Contrast and High-Noise Vessel Segmentation and Location in Venipuncture</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Yuhe ; Qiao, Zhendong ; Zhang, Shaoqin ; Wu, Zhenhuan ; Mao, Xueqin ; Kou, Jiahua ; Qi, Hong</creator><creatorcontrib>Li, Yuhe ; Qiao, Zhendong ; Zhang, Shaoqin ; Wu, Zhenhuan ; Mao, Xueqin ; Kou, Jiahua ; Qi, Hong</creatorcontrib><description>Blood sampling is the most common medical technique, and vessel detection is of crucial interest for automated venipuncture systems. In this paper, we propose a new convex-regional-based gradient model that uses contextually related regional information, including vessel width size and gray distribution, to segment and locate vessels in a near-infrared image. A convex function with the interval size of vessel width is constructed and utilized for its edge-preserving superiority. Moreover, white and linear noise independences are derived. The region-based gradient decreases the number of local extreme in the cross-sectional profile of the vessel to realize its single global minimum in a low-contrast, noisy image. We demonstrate the performance of the proposed model via quantitative tests and comparisons between different methods. Results show the advantages of the model on the continuity and smoothness of segmented vessel. The proposed model is evaluated with receiver operating characteristic curves, which have a corresponding area under the curve of 88.8%. The proposed model will be a powerful method in automated venipuncture system and medical image analysis.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2017.2732481</identifier><identifier>PMID: 28767365</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Automation ; Biomedical imaging ; Blood vessels ; Blood Vessels - diagnostic imaging ; Continuity (mathematics) ; convex function optimization ; Extreme values ; Humans ; Image analysis ; Image contrast ; Image edge detection ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Infrared imagery ; Medical imaging ; Model testing ; Noise ; noise independence ; Noise measurement ; Phlebotomy ; Phlebotomy - methods ; regional-gradient ; ROC Curve ; Smoothness ; Spectroscopy, Near-Infrared - methods ; Veins ; venipuncture system ; Vessel segmentation</subject><ispartof>IEEE transactions on medical imaging, 2017-11, Vol.36 (11), p.2216-2227</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-c11e56d85cb9e5d9f5343d6a78604732c5f904b7ebe5a13e8f4053c08cb1b32d3</citedby><cites>FETCH-LOGICAL-c347t-c11e56d85cb9e5d9f5343d6a78604732c5f904b7ebe5a13e8f4053c08cb1b32d3</cites><orcidid>0000-0002-4188-2228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7994671$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28767365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yuhe</creatorcontrib><creatorcontrib>Qiao, Zhendong</creatorcontrib><creatorcontrib>Zhang, Shaoqin</creatorcontrib><creatorcontrib>Wu, Zhenhuan</creatorcontrib><creatorcontrib>Mao, Xueqin</creatorcontrib><creatorcontrib>Kou, Jiahua</creatorcontrib><creatorcontrib>Qi, Hong</creatorcontrib><title>A Novel Method for Low-Contrast and High-Noise Vessel Segmentation and Location in Venipuncture</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Blood sampling is the most common medical technique, and vessel detection is of crucial interest for automated venipuncture systems. In this paper, we propose a new convex-regional-based gradient model that uses contextually related regional information, including vessel width size and gray distribution, to segment and locate vessels in a near-infrared image. A convex function with the interval size of vessel width is constructed and utilized for its edge-preserving superiority. Moreover, white and linear noise independences are derived. The region-based gradient decreases the number of local extreme in the cross-sectional profile of the vessel to realize its single global minimum in a low-contrast, noisy image. We demonstrate the performance of the proposed model via quantitative tests and comparisons between different methods. Results show the advantages of the model on the continuity and smoothness of segmented vessel. The proposed model is evaluated with receiver operating characteristic curves, which have a corresponding area under the curve of 88.8%. The proposed model will be a powerful method in automated venipuncture system and medical image analysis.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Biomedical imaging</subject><subject>Blood vessels</subject><subject>Blood Vessels - diagnostic imaging</subject><subject>Continuity (mathematics)</subject><subject>convex function optimization</subject><subject>Extreme values</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image contrast</subject><subject>Image edge detection</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Infrared imagery</subject><subject>Medical imaging</subject><subject>Model testing</subject><subject>Noise</subject><subject>noise independence</subject><subject>Noise measurement</subject><subject>Phlebotomy</subject><subject>Phlebotomy - methods</subject><subject>regional-gradient</subject><subject>ROC Curve</subject><subject>Smoothness</subject><subject>Spectroscopy, Near-Infrared - methods</subject><subject>Veins</subject><subject>venipuncture system</subject><subject>Vessel segmentation</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkE1PGzEQhq2qqElp75UqVSv10ssGjz_W9hFFUJACHKCIm7XrnU0WJXZq7xb13-OQwIHTaDTPO5p5CPkGdAZAzcnd1eWMUVAzpjgTGj6QKUipSybFw0cypUzpktKKTcjnlB4pBSGp-UQmTKtK8UpOiT0trsM_XBdXOKxCW3QhFovwVM6DH2KdhqL2bXHRL1fldegTFveYUqZvcblBP9RDH_wLsghu3_Q-M77fjt4NY8Qv5Kir1wm_Huox-XN-dje_KBc3vy_np4vScaGG0gGgrFotXWNQtqaTXPC2qpWuqMi_OdkZKhqFDcoaOOpOUMkd1a6BhrOWH5Nf-73bGP6OmAa76ZPD9br2GMZkwTCptTbAM_rzHfoYxujzdZaBEoIppSFTdE-5GFKK2Nlt7Dd1_G-B2p18m-XbnXx7kJ8jPw6Lx2aD7Vvg1XYGvu-BHhHfxsoYUSngz_UAhz0</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Li, Yuhe</creator><creator>Qiao, Zhendong</creator><creator>Zhang, Shaoqin</creator><creator>Wu, Zhenhuan</creator><creator>Mao, Xueqin</creator><creator>Kou, Jiahua</creator><creator>Qi, Hong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4188-2228</orcidid></search><sort><creationdate>20171101</creationdate><title>A Novel Method for Low-Contrast and High-Noise Vessel Segmentation and Location in Venipuncture</title><author>Li, Yuhe ; Qiao, Zhendong ; Zhang, Shaoqin ; Wu, Zhenhuan ; Mao, Xueqin ; Kou, Jiahua ; Qi, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-c11e56d85cb9e5d9f5343d6a78604732c5f904b7ebe5a13e8f4053c08cb1b32d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Biomedical imaging</topic><topic>Blood vessels</topic><topic>Blood Vessels - diagnostic imaging</topic><topic>Continuity (mathematics)</topic><topic>convex function optimization</topic><topic>Extreme values</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image contrast</topic><topic>Image edge detection</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Infrared imagery</topic><topic>Medical imaging</topic><topic>Model testing</topic><topic>Noise</topic><topic>noise independence</topic><topic>Noise measurement</topic><topic>Phlebotomy</topic><topic>Phlebotomy - methods</topic><topic>regional-gradient</topic><topic>ROC Curve</topic><topic>Smoothness</topic><topic>Spectroscopy, Near-Infrared - methods</topic><topic>Veins</topic><topic>venipuncture system</topic><topic>Vessel segmentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuhe</creatorcontrib><creatorcontrib>Qiao, Zhendong</creatorcontrib><creatorcontrib>Zhang, Shaoqin</creatorcontrib><creatorcontrib>Wu, Zhenhuan</creatorcontrib><creatorcontrib>Mao, Xueqin</creatorcontrib><creatorcontrib>Kou, Jiahua</creatorcontrib><creatorcontrib>Qi, Hong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yuhe</au><au>Qiao, Zhendong</au><au>Zhang, Shaoqin</au><au>Wu, Zhenhuan</au><au>Mao, Xueqin</au><au>Kou, Jiahua</au><au>Qi, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Method for Low-Contrast and High-Noise Vessel Segmentation and Location in Venipuncture</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>36</volume><issue>11</issue><spage>2216</spage><epage>2227</epage><pages>2216-2227</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Blood sampling is the most common medical technique, and vessel detection is of crucial interest for automated venipuncture systems. In this paper, we propose a new convex-regional-based gradient model that uses contextually related regional information, including vessel width size and gray distribution, to segment and locate vessels in a near-infrared image. A convex function with the interval size of vessel width is constructed and utilized for its edge-preserving superiority. Moreover, white and linear noise independences are derived. The region-based gradient decreases the number of local extreme in the cross-sectional profile of the vessel to realize its single global minimum in a low-contrast, noisy image. We demonstrate the performance of the proposed model via quantitative tests and comparisons between different methods. Results show the advantages of the model on the continuity and smoothness of segmented vessel. The proposed model is evaluated with receiver operating characteristic curves, which have a corresponding area under the curve of 88.8%. The proposed model will be a powerful method in automated venipuncture system and medical image analysis.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28767365</pmid><doi>10.1109/TMI.2017.2732481</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4188-2228</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2017-11, Vol.36 (11), p.2216-2227 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMI_2017_2732481 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithm design and analysis Algorithms Automation Biomedical imaging Blood vessels Blood Vessels - diagnostic imaging Continuity (mathematics) convex function optimization Extreme values Humans Image analysis Image contrast Image edge detection Image processing Image Processing, Computer-Assisted - methods Image segmentation Infrared imagery Medical imaging Model testing Noise noise independence Noise measurement Phlebotomy Phlebotomy - methods regional-gradient ROC Curve Smoothness Spectroscopy, Near-Infrared - methods Veins venipuncture system Vessel segmentation |
title | A Novel Method for Low-Contrast and High-Noise Vessel Segmentation and Location in Venipuncture |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Method%20for%20Low-Contrast%20and%20High-Noise%20Vessel%20Segmentation%20and%20Location%20in%20Venipuncture&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Li,%20Yuhe&rft.date=2017-11-01&rft.volume=36&rft.issue=11&rft.spage=2216&rft.epage=2227&rft.pages=2216-2227&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2017.2732481&rft_dat=%3Cproquest_cross%3E2174427781%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-c11e56d85cb9e5d9f5343d6a78604732c5f904b7ebe5a13e8f4053c08cb1b32d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174427781&rft_id=info:pmid/28767365&rft_ieee_id=7994671&rfr_iscdi=true |