Loading…

Prior Information Guided Regularized Deep Learning for Cell Nucleus Detection

Cell nuclei detection is a challenging research topic because of limitations in cellular image quality and diversity of nuclear morphology, i.e., varying nuclei shapes, sizes, and overlaps between multiple cell nuclei. This has been a topic of enduring interest with promising recent success shown by...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2019-09, Vol.38 (9), p.2047-2058
Main Authors: Tofighi, Mohammad, Guo, Tiantong, Vanamala, Jairam K. P., Monga, Vishal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-1d61ce4e064e79e81d6ca2ce434d7be4feb769e1b8a4368fa7aec604063228f23
cites cdi_FETCH-LOGICAL-c389t-1d61ce4e064e79e81d6ca2ce434d7be4feb769e1b8a4368fa7aec604063228f23
container_end_page 2058
container_issue 9
container_start_page 2047
container_title IEEE transactions on medical imaging
container_volume 38
creator Tofighi, Mohammad
Guo, Tiantong
Vanamala, Jairam K. P.
Monga, Vishal
description Cell nuclei detection is a challenging research topic because of limitations in cellular image quality and diversity of nuclear morphology, i.e., varying nuclei shapes, sizes, and overlaps between multiple cell nuclei. This has been a topic of enduring interest with promising recent success shown by deep learning methods. These methods train convolutional neural networks (CNNs) with a training set of input images and known, labeled nuclei locations. Many such methods are supplemented by spatial or morphological processing. Using a set of canonical cell nuclei shapes, prepared with the help of a domain expert, we develop a new approach that we call shape priors (SPs) with CNNs (SPs-CNN). We further extend the network to introduce an SP layer and then allowing it to become trainable (i.e., optimizable). We call this network as tunable SP-CNN (TSP-CNN). In summary, we present new network structures that can incorporate "expected behavior" of nucleus shapes via two components: learnable layers that perform the nucleus detection and a fixed processing part that guides the learning with prior information. Analytically, we formulate two new regularization terms that are targeted at: 1) learning the shapes and 2) reducing false positives while simultaneously encouraging detection inside the cell nucleus boundary. Experimental results on two challenging datasets reveal that the proposed SP-CNN and TSP-CNN can outperform the state-of-the-art alternatives.
doi_str_mv 10.1109/TMI.2019.2895318
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMI_2019_2895318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8626549</ieee_id><sourcerecordid>2284215407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-1d61ce4e064e79e81d6ca2ce434d7be4feb769e1b8a4368fa7aec604063228f23</originalsourceid><addsrcrecordid>eNpdkEtLw0AURgdRtFb3giABN25S7zwyj6VUrYVWRSq4G6bJTYmkSZ1pFvrrndLahat53PN9XA4hFxQGlIK5nU3HAwbUDJg2Gaf6gPRolumUZeLjkPSAKZ0CSHZCTkP4BKAiA3NMTjgo4EBlj0xffdX6ZNyUrV-6ddU2yairCiySN1x0tfPVT7zfI66SCTrfVM0iiWgyxLpOnru8xi7E8RrzTfaMHJWuDni-O_vk_fFhNnxKJy-j8fBukuZcm3VKC0lzFAhSoDKo4zt3LP5wUag5ihLnShqkc-0El7p0ymEuQYDkjOmS8T652faufPvVYVjbZRXyuJJrsO2CZVQZoaliNKLX_9DPtvNN3M7GLsFoJkBFCrZU7tsQPJZ25aul89-Wgt2otlG13ai2O9UxcrUr7uZLLPaBP7cRuNwCFSLux1oymQnDfwH_LYE3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2284215407</pqid></control><display><type>article</type><title>Prior Information Guided Regularized Deep Learning for Cell Nucleus Detection</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tofighi, Mohammad ; Guo, Tiantong ; Vanamala, Jairam K. P. ; Monga, Vishal</creator><creatorcontrib>Tofighi, Mohammad ; Guo, Tiantong ; Vanamala, Jairam K. P. ; Monga, Vishal</creatorcontrib><description>Cell nuclei detection is a challenging research topic because of limitations in cellular image quality and diversity of nuclear morphology, i.e., varying nuclei shapes, sizes, and overlaps between multiple cell nuclei. This has been a topic of enduring interest with promising recent success shown by deep learning methods. These methods train convolutional neural networks (CNNs) with a training set of input images and known, labeled nuclei locations. Many such methods are supplemented by spatial or morphological processing. Using a set of canonical cell nuclei shapes, prepared with the help of a domain expert, we develop a new approach that we call shape priors (SPs) with CNNs (SPs-CNN). We further extend the network to introduce an SP layer and then allowing it to become trainable (i.e., optimizable). We call this network as tunable SP-CNN (TSP-CNN). In summary, we present new network structures that can incorporate "expected behavior" of nucleus shapes via two components: learnable layers that perform the nucleus detection and a fixed processing part that guides the learning with prior information. Analytically, we formulate two new regularization terms that are targeted at: 1) learning the shapes and 2) reducing false positives while simultaneously encouraging detection inside the cell nucleus boundary. Experimental results on two challenging datasets reveal that the proposed SP-CNN and TSP-CNN can outperform the state-of-the-art alternatives.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2019.2895318</identifier><identifier>PMID: 30703016</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Animals ; Artificial neural networks ; Biomedical imaging ; Cell Nucleus - physiology ; Colon - cytology ; Colon - diagnostic imaging ; Colon - pathology ; Computer architecture ; convolutional neural networks ; Cytology ; Databases, Factual ; Deep Learning ; Image detection ; Image edge detection ; Image Processing, Computer-Assisted - methods ; Image quality ; Image segmentation ; Information processing ; learnable shapes ; Machine learning ; Microprocessors ; Morphology ; Neural networks ; Nuclei ; Nuclei (cytology) ; Nucleus detection ; Regularization ; Shape ; shape priors ; Shape recognition ; Swine ; Traveling salesman problem</subject><ispartof>IEEE transactions on medical imaging, 2019-09, Vol.38 (9), p.2047-2058</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-1d61ce4e064e79e81d6ca2ce434d7be4feb769e1b8a4368fa7aec604063228f23</citedby><cites>FETCH-LOGICAL-c389t-1d61ce4e064e79e81d6ca2ce434d7be4feb769e1b8a4368fa7aec604063228f23</cites><orcidid>0000-0001-9994-2636 ; 0000-0002-5100-2263 ; 0000-0002-3249-1399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8626549$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30703016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tofighi, Mohammad</creatorcontrib><creatorcontrib>Guo, Tiantong</creatorcontrib><creatorcontrib>Vanamala, Jairam K. P.</creatorcontrib><creatorcontrib>Monga, Vishal</creatorcontrib><title>Prior Information Guided Regularized Deep Learning for Cell Nucleus Detection</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Cell nuclei detection is a challenging research topic because of limitations in cellular image quality and diversity of nuclear morphology, i.e., varying nuclei shapes, sizes, and overlaps between multiple cell nuclei. This has been a topic of enduring interest with promising recent success shown by deep learning methods. These methods train convolutional neural networks (CNNs) with a training set of input images and known, labeled nuclei locations. Many such methods are supplemented by spatial or morphological processing. Using a set of canonical cell nuclei shapes, prepared with the help of a domain expert, we develop a new approach that we call shape priors (SPs) with CNNs (SPs-CNN). We further extend the network to introduce an SP layer and then allowing it to become trainable (i.e., optimizable). We call this network as tunable SP-CNN (TSP-CNN). In summary, we present new network structures that can incorporate "expected behavior" of nucleus shapes via two components: learnable layers that perform the nucleus detection and a fixed processing part that guides the learning with prior information. Analytically, we formulate two new regularization terms that are targeted at: 1) learning the shapes and 2) reducing false positives while simultaneously encouraging detection inside the cell nucleus boundary. Experimental results on two challenging datasets reveal that the proposed SP-CNN and TSP-CNN can outperform the state-of-the-art alternatives.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Artificial neural networks</subject><subject>Biomedical imaging</subject><subject>Cell Nucleus - physiology</subject><subject>Colon - cytology</subject><subject>Colon - diagnostic imaging</subject><subject>Colon - pathology</subject><subject>Computer architecture</subject><subject>convolutional neural networks</subject><subject>Cytology</subject><subject>Databases, Factual</subject><subject>Deep Learning</subject><subject>Image detection</subject><subject>Image edge detection</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>Information processing</subject><subject>learnable shapes</subject><subject>Machine learning</subject><subject>Microprocessors</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Nuclei</subject><subject>Nuclei (cytology)</subject><subject>Nucleus detection</subject><subject>Regularization</subject><subject>Shape</subject><subject>shape priors</subject><subject>Shape recognition</subject><subject>Swine</subject><subject>Traveling salesman problem</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLw0AURgdRtFb3giABN25S7zwyj6VUrYVWRSq4G6bJTYmkSZ1pFvrrndLahat53PN9XA4hFxQGlIK5nU3HAwbUDJg2Gaf6gPRolumUZeLjkPSAKZ0CSHZCTkP4BKAiA3NMTjgo4EBlj0xffdX6ZNyUrV-6ddU2yairCiySN1x0tfPVT7zfI66SCTrfVM0iiWgyxLpOnru8xi7E8RrzTfaMHJWuDni-O_vk_fFhNnxKJy-j8fBukuZcm3VKC0lzFAhSoDKo4zt3LP5wUag5ihLnShqkc-0El7p0ymEuQYDkjOmS8T652faufPvVYVjbZRXyuJJrsO2CZVQZoaliNKLX_9DPtvNN3M7GLsFoJkBFCrZU7tsQPJZ25aul89-Wgt2otlG13ai2O9UxcrUr7uZLLPaBP7cRuNwCFSLux1oymQnDfwH_LYE3</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Tofighi, Mohammad</creator><creator>Guo, Tiantong</creator><creator>Vanamala, Jairam K. P.</creator><creator>Monga, Vishal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9994-2636</orcidid><orcidid>https://orcid.org/0000-0002-5100-2263</orcidid><orcidid>https://orcid.org/0000-0002-3249-1399</orcidid></search><sort><creationdate>20190901</creationdate><title>Prior Information Guided Regularized Deep Learning for Cell Nucleus Detection</title><author>Tofighi, Mohammad ; Guo, Tiantong ; Vanamala, Jairam K. P. ; Monga, Vishal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-1d61ce4e064e79e81d6ca2ce434d7be4feb769e1b8a4368fa7aec604063228f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Artificial neural networks</topic><topic>Biomedical imaging</topic><topic>Cell Nucleus - physiology</topic><topic>Colon - cytology</topic><topic>Colon - diagnostic imaging</topic><topic>Colon - pathology</topic><topic>Computer architecture</topic><topic>convolutional neural networks</topic><topic>Cytology</topic><topic>Databases, Factual</topic><topic>Deep Learning</topic><topic>Image detection</topic><topic>Image edge detection</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>Information processing</topic><topic>learnable shapes</topic><topic>Machine learning</topic><topic>Microprocessors</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Nuclei</topic><topic>Nuclei (cytology)</topic><topic>Nucleus detection</topic><topic>Regularization</topic><topic>Shape</topic><topic>shape priors</topic><topic>Shape recognition</topic><topic>Swine</topic><topic>Traveling salesman problem</topic><toplevel>online_resources</toplevel><creatorcontrib>Tofighi, Mohammad</creatorcontrib><creatorcontrib>Guo, Tiantong</creatorcontrib><creatorcontrib>Vanamala, Jairam K. P.</creatorcontrib><creatorcontrib>Monga, Vishal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tofighi, Mohammad</au><au>Guo, Tiantong</au><au>Vanamala, Jairam K. P.</au><au>Monga, Vishal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prior Information Guided Regularized Deep Learning for Cell Nucleus Detection</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>38</volume><issue>9</issue><spage>2047</spage><epage>2058</epage><pages>2047-2058</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Cell nuclei detection is a challenging research topic because of limitations in cellular image quality and diversity of nuclear morphology, i.e., varying nuclei shapes, sizes, and overlaps between multiple cell nuclei. This has been a topic of enduring interest with promising recent success shown by deep learning methods. These methods train convolutional neural networks (CNNs) with a training set of input images and known, labeled nuclei locations. Many such methods are supplemented by spatial or morphological processing. Using a set of canonical cell nuclei shapes, prepared with the help of a domain expert, we develop a new approach that we call shape priors (SPs) with CNNs (SPs-CNN). We further extend the network to introduce an SP layer and then allowing it to become trainable (i.e., optimizable). We call this network as tunable SP-CNN (TSP-CNN). In summary, we present new network structures that can incorporate "expected behavior" of nucleus shapes via two components: learnable layers that perform the nucleus detection and a fixed processing part that guides the learning with prior information. Analytically, we formulate two new regularization terms that are targeted at: 1) learning the shapes and 2) reducing false positives while simultaneously encouraging detection inside the cell nucleus boundary. Experimental results on two challenging datasets reveal that the proposed SP-CNN and TSP-CNN can outperform the state-of-the-art alternatives.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30703016</pmid><doi>10.1109/TMI.2019.2895318</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9994-2636</orcidid><orcidid>https://orcid.org/0000-0002-5100-2263</orcidid><orcidid>https://orcid.org/0000-0002-3249-1399</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2019-09, Vol.38 (9), p.2047-2058
issn 0278-0062
1558-254X
language eng
recordid cdi_crossref_primary_10_1109_TMI_2019_2895318
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Animals
Artificial neural networks
Biomedical imaging
Cell Nucleus - physiology
Colon - cytology
Colon - diagnostic imaging
Colon - pathology
Computer architecture
convolutional neural networks
Cytology
Databases, Factual
Deep Learning
Image detection
Image edge detection
Image Processing, Computer-Assisted - methods
Image quality
Image segmentation
Information processing
learnable shapes
Machine learning
Microprocessors
Morphology
Neural networks
Nuclei
Nuclei (cytology)
Nucleus detection
Regularization
Shape
shape priors
Shape recognition
Swine
Traveling salesman problem
title Prior Information Guided Regularized Deep Learning for Cell Nucleus Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prior%20Information%20Guided%20Regularized%20Deep%20Learning%20for%20Cell%20Nucleus%20Detection&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Tofighi,%20Mohammad&rft.date=2019-09-01&rft.volume=38&rft.issue=9&rft.spage=2047&rft.epage=2058&rft.pages=2047-2058&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2019.2895318&rft_dat=%3Cproquest_cross%3E2284215407%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-1d61ce4e064e79e81d6ca2ce434d7be4feb769e1b8a4368fa7aec604063228f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2284215407&rft_id=info:pmid/30703016&rft_ieee_id=8626549&rfr_iscdi=true