Loading…
Prior Information Guided Regularized Deep Learning for Cell Nucleus Detection
Cell nuclei detection is a challenging research topic because of limitations in cellular image quality and diversity of nuclear morphology, i.e., varying nuclei shapes, sizes, and overlaps between multiple cell nuclei. This has been a topic of enduring interest with promising recent success shown by...
Saved in:
Published in: | IEEE transactions on medical imaging 2019-09, Vol.38 (9), p.2047-2058 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c389t-1d61ce4e064e79e81d6ca2ce434d7be4feb769e1b8a4368fa7aec604063228f23 |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-1d61ce4e064e79e81d6ca2ce434d7be4feb769e1b8a4368fa7aec604063228f23 |
container_end_page | 2058 |
container_issue | 9 |
container_start_page | 2047 |
container_title | IEEE transactions on medical imaging |
container_volume | 38 |
creator | Tofighi, Mohammad Guo, Tiantong Vanamala, Jairam K. P. Monga, Vishal |
description | Cell nuclei detection is a challenging research topic because of limitations in cellular image quality and diversity of nuclear morphology, i.e., varying nuclei shapes, sizes, and overlaps between multiple cell nuclei. This has been a topic of enduring interest with promising recent success shown by deep learning methods. These methods train convolutional neural networks (CNNs) with a training set of input images and known, labeled nuclei locations. Many such methods are supplemented by spatial or morphological processing. Using a set of canonical cell nuclei shapes, prepared with the help of a domain expert, we develop a new approach that we call shape priors (SPs) with CNNs (SPs-CNN). We further extend the network to introduce an SP layer and then allowing it to become trainable (i.e., optimizable). We call this network as tunable SP-CNN (TSP-CNN). In summary, we present new network structures that can incorporate "expected behavior" of nucleus shapes via two components: learnable layers that perform the nucleus detection and a fixed processing part that guides the learning with prior information. Analytically, we formulate two new regularization terms that are targeted at: 1) learning the shapes and 2) reducing false positives while simultaneously encouraging detection inside the cell nucleus boundary. Experimental results on two challenging datasets reveal that the proposed SP-CNN and TSP-CNN can outperform the state-of-the-art alternatives. |
doi_str_mv | 10.1109/TMI.2019.2895318 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMI_2019_2895318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8626549</ieee_id><sourcerecordid>2284215407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-1d61ce4e064e79e81d6ca2ce434d7be4feb769e1b8a4368fa7aec604063228f23</originalsourceid><addsrcrecordid>eNpdkEtLw0AURgdRtFb3giABN25S7zwyj6VUrYVWRSq4G6bJTYmkSZ1pFvrrndLahat53PN9XA4hFxQGlIK5nU3HAwbUDJg2Gaf6gPRolumUZeLjkPSAKZ0CSHZCTkP4BKAiA3NMTjgo4EBlj0xffdX6ZNyUrV-6ddU2yairCiySN1x0tfPVT7zfI66SCTrfVM0iiWgyxLpOnru8xi7E8RrzTfaMHJWuDni-O_vk_fFhNnxKJy-j8fBukuZcm3VKC0lzFAhSoDKo4zt3LP5wUag5ihLnShqkc-0El7p0ymEuQYDkjOmS8T652faufPvVYVjbZRXyuJJrsO2CZVQZoaliNKLX_9DPtvNN3M7GLsFoJkBFCrZU7tsQPJZ25aul89-Wgt2otlG13ai2O9UxcrUr7uZLLPaBP7cRuNwCFSLux1oymQnDfwH_LYE3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2284215407</pqid></control><display><type>article</type><title>Prior Information Guided Regularized Deep Learning for Cell Nucleus Detection</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tofighi, Mohammad ; Guo, Tiantong ; Vanamala, Jairam K. P. ; Monga, Vishal</creator><creatorcontrib>Tofighi, Mohammad ; Guo, Tiantong ; Vanamala, Jairam K. P. ; Monga, Vishal</creatorcontrib><description>Cell nuclei detection is a challenging research topic because of limitations in cellular image quality and diversity of nuclear morphology, i.e., varying nuclei shapes, sizes, and overlaps between multiple cell nuclei. This has been a topic of enduring interest with promising recent success shown by deep learning methods. These methods train convolutional neural networks (CNNs) with a training set of input images and known, labeled nuclei locations. Many such methods are supplemented by spatial or morphological processing. Using a set of canonical cell nuclei shapes, prepared with the help of a domain expert, we develop a new approach that we call shape priors (SPs) with CNNs (SPs-CNN). We further extend the network to introduce an SP layer and then allowing it to become trainable (i.e., optimizable). We call this network as tunable SP-CNN (TSP-CNN). In summary, we present new network structures that can incorporate "expected behavior" of nucleus shapes via two components: learnable layers that perform the nucleus detection and a fixed processing part that guides the learning with prior information. Analytically, we formulate two new regularization terms that are targeted at: 1) learning the shapes and 2) reducing false positives while simultaneously encouraging detection inside the cell nucleus boundary. Experimental results on two challenging datasets reveal that the proposed SP-CNN and TSP-CNN can outperform the state-of-the-art alternatives.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2019.2895318</identifier><identifier>PMID: 30703016</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Animals ; Artificial neural networks ; Biomedical imaging ; Cell Nucleus - physiology ; Colon - cytology ; Colon - diagnostic imaging ; Colon - pathology ; Computer architecture ; convolutional neural networks ; Cytology ; Databases, Factual ; Deep Learning ; Image detection ; Image edge detection ; Image Processing, Computer-Assisted - methods ; Image quality ; Image segmentation ; Information processing ; learnable shapes ; Machine learning ; Microprocessors ; Morphology ; Neural networks ; Nuclei ; Nuclei (cytology) ; Nucleus detection ; Regularization ; Shape ; shape priors ; Shape recognition ; Swine ; Traveling salesman problem</subject><ispartof>IEEE transactions on medical imaging, 2019-09, Vol.38 (9), p.2047-2058</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-1d61ce4e064e79e81d6ca2ce434d7be4feb769e1b8a4368fa7aec604063228f23</citedby><cites>FETCH-LOGICAL-c389t-1d61ce4e064e79e81d6ca2ce434d7be4feb769e1b8a4368fa7aec604063228f23</cites><orcidid>0000-0001-9994-2636 ; 0000-0002-5100-2263 ; 0000-0002-3249-1399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8626549$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30703016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tofighi, Mohammad</creatorcontrib><creatorcontrib>Guo, Tiantong</creatorcontrib><creatorcontrib>Vanamala, Jairam K. P.</creatorcontrib><creatorcontrib>Monga, Vishal</creatorcontrib><title>Prior Information Guided Regularized Deep Learning for Cell Nucleus Detection</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Cell nuclei detection is a challenging research topic because of limitations in cellular image quality and diversity of nuclear morphology, i.e., varying nuclei shapes, sizes, and overlaps between multiple cell nuclei. This has been a topic of enduring interest with promising recent success shown by deep learning methods. These methods train convolutional neural networks (CNNs) with a training set of input images and known, labeled nuclei locations. Many such methods are supplemented by spatial or morphological processing. Using a set of canonical cell nuclei shapes, prepared with the help of a domain expert, we develop a new approach that we call shape priors (SPs) with CNNs (SPs-CNN). We further extend the network to introduce an SP layer and then allowing it to become trainable (i.e., optimizable). We call this network as tunable SP-CNN (TSP-CNN). In summary, we present new network structures that can incorporate "expected behavior" of nucleus shapes via two components: learnable layers that perform the nucleus detection and a fixed processing part that guides the learning with prior information. Analytically, we formulate two new regularization terms that are targeted at: 1) learning the shapes and 2) reducing false positives while simultaneously encouraging detection inside the cell nucleus boundary. Experimental results on two challenging datasets reveal that the proposed SP-CNN and TSP-CNN can outperform the state-of-the-art alternatives.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Artificial neural networks</subject><subject>Biomedical imaging</subject><subject>Cell Nucleus - physiology</subject><subject>Colon - cytology</subject><subject>Colon - diagnostic imaging</subject><subject>Colon - pathology</subject><subject>Computer architecture</subject><subject>convolutional neural networks</subject><subject>Cytology</subject><subject>Databases, Factual</subject><subject>Deep Learning</subject><subject>Image detection</subject><subject>Image edge detection</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>Information processing</subject><subject>learnable shapes</subject><subject>Machine learning</subject><subject>Microprocessors</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Nuclei</subject><subject>Nuclei (cytology)</subject><subject>Nucleus detection</subject><subject>Regularization</subject><subject>Shape</subject><subject>shape priors</subject><subject>Shape recognition</subject><subject>Swine</subject><subject>Traveling salesman problem</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLw0AURgdRtFb3giABN25S7zwyj6VUrYVWRSq4G6bJTYmkSZ1pFvrrndLahat53PN9XA4hFxQGlIK5nU3HAwbUDJg2Gaf6gPRolumUZeLjkPSAKZ0CSHZCTkP4BKAiA3NMTjgo4EBlj0xffdX6ZNyUrV-6ddU2yairCiySN1x0tfPVT7zfI66SCTrfVM0iiWgyxLpOnru8xi7E8RrzTfaMHJWuDni-O_vk_fFhNnxKJy-j8fBukuZcm3VKC0lzFAhSoDKo4zt3LP5wUag5ihLnShqkc-0El7p0ymEuQYDkjOmS8T652faufPvVYVjbZRXyuJJrsO2CZVQZoaliNKLX_9DPtvNN3M7GLsFoJkBFCrZU7tsQPJZ25aul89-Wgt2otlG13ai2O9UxcrUr7uZLLPaBP7cRuNwCFSLux1oymQnDfwH_LYE3</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Tofighi, Mohammad</creator><creator>Guo, Tiantong</creator><creator>Vanamala, Jairam K. P.</creator><creator>Monga, Vishal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9994-2636</orcidid><orcidid>https://orcid.org/0000-0002-5100-2263</orcidid><orcidid>https://orcid.org/0000-0002-3249-1399</orcidid></search><sort><creationdate>20190901</creationdate><title>Prior Information Guided Regularized Deep Learning for Cell Nucleus Detection</title><author>Tofighi, Mohammad ; Guo, Tiantong ; Vanamala, Jairam K. P. ; Monga, Vishal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-1d61ce4e064e79e81d6ca2ce434d7be4feb769e1b8a4368fa7aec604063228f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Artificial neural networks</topic><topic>Biomedical imaging</topic><topic>Cell Nucleus - physiology</topic><topic>Colon - cytology</topic><topic>Colon - diagnostic imaging</topic><topic>Colon - pathology</topic><topic>Computer architecture</topic><topic>convolutional neural networks</topic><topic>Cytology</topic><topic>Databases, Factual</topic><topic>Deep Learning</topic><topic>Image detection</topic><topic>Image edge detection</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>Information processing</topic><topic>learnable shapes</topic><topic>Machine learning</topic><topic>Microprocessors</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Nuclei</topic><topic>Nuclei (cytology)</topic><topic>Nucleus detection</topic><topic>Regularization</topic><topic>Shape</topic><topic>shape priors</topic><topic>Shape recognition</topic><topic>Swine</topic><topic>Traveling salesman problem</topic><toplevel>online_resources</toplevel><creatorcontrib>Tofighi, Mohammad</creatorcontrib><creatorcontrib>Guo, Tiantong</creatorcontrib><creatorcontrib>Vanamala, Jairam K. P.</creatorcontrib><creatorcontrib>Monga, Vishal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tofighi, Mohammad</au><au>Guo, Tiantong</au><au>Vanamala, Jairam K. P.</au><au>Monga, Vishal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prior Information Guided Regularized Deep Learning for Cell Nucleus Detection</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>38</volume><issue>9</issue><spage>2047</spage><epage>2058</epage><pages>2047-2058</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Cell nuclei detection is a challenging research topic because of limitations in cellular image quality and diversity of nuclear morphology, i.e., varying nuclei shapes, sizes, and overlaps between multiple cell nuclei. This has been a topic of enduring interest with promising recent success shown by deep learning methods. These methods train convolutional neural networks (CNNs) with a training set of input images and known, labeled nuclei locations. Many such methods are supplemented by spatial or morphological processing. Using a set of canonical cell nuclei shapes, prepared with the help of a domain expert, we develop a new approach that we call shape priors (SPs) with CNNs (SPs-CNN). We further extend the network to introduce an SP layer and then allowing it to become trainable (i.e., optimizable). We call this network as tunable SP-CNN (TSP-CNN). In summary, we present new network structures that can incorporate "expected behavior" of nucleus shapes via two components: learnable layers that perform the nucleus detection and a fixed processing part that guides the learning with prior information. Analytically, we formulate two new regularization terms that are targeted at: 1) learning the shapes and 2) reducing false positives while simultaneously encouraging detection inside the cell nucleus boundary. Experimental results on two challenging datasets reveal that the proposed SP-CNN and TSP-CNN can outperform the state-of-the-art alternatives.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30703016</pmid><doi>10.1109/TMI.2019.2895318</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9994-2636</orcidid><orcidid>https://orcid.org/0000-0002-5100-2263</orcidid><orcidid>https://orcid.org/0000-0002-3249-1399</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2019-09, Vol.38 (9), p.2047-2058 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMI_2019_2895318 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Animals Artificial neural networks Biomedical imaging Cell Nucleus - physiology Colon - cytology Colon - diagnostic imaging Colon - pathology Computer architecture convolutional neural networks Cytology Databases, Factual Deep Learning Image detection Image edge detection Image Processing, Computer-Assisted - methods Image quality Image segmentation Information processing learnable shapes Machine learning Microprocessors Morphology Neural networks Nuclei Nuclei (cytology) Nucleus detection Regularization Shape shape priors Shape recognition Swine Traveling salesman problem |
title | Prior Information Guided Regularized Deep Learning for Cell Nucleus Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prior%20Information%20Guided%20Regularized%20Deep%20Learning%20for%20Cell%20Nucleus%20Detection&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Tofighi,%20Mohammad&rft.date=2019-09-01&rft.volume=38&rft.issue=9&rft.spage=2047&rft.epage=2058&rft.pages=2047-2058&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2019.2895318&rft_dat=%3Cproquest_cross%3E2284215407%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-1d61ce4e064e79e81d6ca2ce434d7be4feb769e1b8a4368fa7aec604063228f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2284215407&rft_id=info:pmid/30703016&rft_ieee_id=8626549&rfr_iscdi=true |