Loading…
SDMT: Spatial Dependence Multi-Task Transformer Network for 3D Knee MRI Segmentation and Landmark Localization
Knee segmentation and landmark localization from 3D MRI are two significant tasks for diagnosis and treatment of knee diseases. With the development of deep learning, Convolutional Neural Network (CNN) based methods have become the mainstream. However, the existing CNN methods are mostly single-task...
Saved in:
Published in: | IEEE transactions on medical imaging 2023-08, Vol.42 (8), p.1-1 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c348t-26d1412c1095e918883c56f2b34e192783f7a3b8d1ace98b92c00f0722ac3e283 |
---|---|
cites | cdi_FETCH-LOGICAL-c348t-26d1412c1095e918883c56f2b34e192783f7a3b8d1ace98b92c00f0722ac3e283 |
container_end_page | 1 |
container_issue | 8 |
container_start_page | 1 |
container_title | IEEE transactions on medical imaging |
container_volume | 42 |
creator | Li, Xiang Lv, Songcen Li, Minglei Zhang, Jiusi Jiang, Yuchen Qin, Yong Luo, Hao Yin, Shen |
description | Knee segmentation and landmark localization from 3D MRI are two significant tasks for diagnosis and treatment of knee diseases. With the development of deep learning, Convolutional Neural Network (CNN) based methods have become the mainstream. However, the existing CNN methods are mostly single-task methods. Due to the complex structure of bone, cartilage and ligament in the knee, it is challenging to complete the segmentation or landmark localization alone. And establishing independent models for all tasks will bring difficulties for surgeon's clinical using. In this paper, a Spatial Dependence Multi-task Transformer (SDMT) network is proposed for 3D knee MRI segmentation and landmark localization. We use a shared encoder for feature extraction, then SDMT utilizes the spatial dependence of segmentation results and landmark position to mutually promote the two tasks. Specifically, SDMT adds spatial encoding to the features, and a task hybrided multi-head attention mechanism is designed, in which the attention heads are divided into the inter-task attention head and the intra-task attention head. The two attention head deal with the spatial dependence between two tasks and correlation within the single task, respectively. Finally, we design a dynamic weight multi-task loss function to balance the training process of two task. The proposed method is validated on our 3D knee MRI multi-task datasets. Dice can reach 83.91% in the segmentation task, and MRE can reach 2.12 mm in the landmark localization task, it is competitive and superior over other state-of-the-art single-task methods. |
doi_str_mv | 10.1109/TMI.2023.3247543 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMI_2023_3247543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10053640</ieee_id><sourcerecordid>2844892938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-26d1412c1095e918883c56f2b34e192783f7a3b8d1ace98b92c00f0722ac3e283</originalsourceid><addsrcrecordid>eNpdkc2P0zAQxS0EYsvCnQNClrhwSRl_JTY3tGWhogWJBomb5ToTlN3EKXYiBH_9urQgxMUja37zNG8eIU8ZLBkD86rerpccuFgKLislxT2yYErpgiv59T5ZAK90AVDyC_IopRsAJhWYh-RCVLmlKrkgYbfa1q_p7uCmzvV0hQcMDQaPdDv3U1fULt3SOrqQ2jEOGOlHnH6M8ZbmLxUr-iFgRj-v6Q6_DRimLDMG6kJDN_kZXCY3o3d99-t35zF50Lo-4ZNzvSRfrt_WV--Lzad366s3m8ILqaeClw2TjPvsUaFhWmvhVdnyvZDITHYl2sqJvW6Y82j03nAP0ELFufMCuRaX5OVJ9xDH7zOmyQ5d8tj3LuA4J8sroysGZWky-uI_9GacY8jbWa6l1IYbcRSEE-XjmFLE1h5il-39tAzsMQubs7DHLOw5izzy_Cw87wds_g78OX4Gnp2ADhH_0QMlSgniDk94i2o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844892938</pqid></control><display><type>article</type><title>SDMT: Spatial Dependence Multi-Task Transformer Network for 3D Knee MRI Segmentation and Landmark Localization</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Xiang ; Lv, Songcen ; Li, Minglei ; Zhang, Jiusi ; Jiang, Yuchen ; Qin, Yong ; Luo, Hao ; Yin, Shen</creator><creatorcontrib>Li, Xiang ; Lv, Songcen ; Li, Minglei ; Zhang, Jiusi ; Jiang, Yuchen ; Qin, Yong ; Luo, Hao ; Yin, Shen</creatorcontrib><description>Knee segmentation and landmark localization from 3D MRI are two significant tasks for diagnosis and treatment of knee diseases. With the development of deep learning, Convolutional Neural Network (CNN) based methods have become the mainstream. However, the existing CNN methods are mostly single-task methods. Due to the complex structure of bone, cartilage and ligament in the knee, it is challenging to complete the segmentation or landmark localization alone. And establishing independent models for all tasks will bring difficulties for surgeon's clinical using. In this paper, a Spatial Dependence Multi-task Transformer (SDMT) network is proposed for 3D knee MRI segmentation and landmark localization. We use a shared encoder for feature extraction, then SDMT utilizes the spatial dependence of segmentation results and landmark position to mutually promote the two tasks. Specifically, SDMT adds spatial encoding to the features, and a task hybrided multi-head attention mechanism is designed, in which the attention heads are divided into the inter-task attention head and the intra-task attention head. The two attention head deal with the spatial dependence between two tasks and correlation within the single task, respectively. Finally, we design a dynamic weight multi-task loss function to balance the training process of two task. The proposed method is validated on our 3D knee MRI multi-task datasets. Dice can reach 83.91% in the segmentation task, and MRE can reach 2.12 mm in the landmark localization task, it is competitive and superior over other state-of-the-art single-task methods.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2023.3247543</identifier><identifier>PMID: 37027574</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Attention task ; Bones ; Coders ; Convolutional neural network ; Deep learning ; Feature extraction ; Image processing ; Image Processing, Computer-Assisted ; Image segmentation ; Knee ; Knee Joint - diagnostic imaging ; Knee landmark localization ; Knee segmentation ; Ligaments ; Localization ; Location awareness ; Machine learning ; Magnetic Resonance Imaging ; Multi-task learning ; Neural networks ; Neural Networks, Computer ; Task analysis ; Three-dimensional displays ; Transformer ; Transformers</subject><ispartof>IEEE transactions on medical imaging, 2023-08, Vol.42 (8), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-26d1412c1095e918883c56f2b34e192783f7a3b8d1ace98b92c00f0722ac3e283</citedby><cites>FETCH-LOGICAL-c348t-26d1412c1095e918883c56f2b34e192783f7a3b8d1ace98b92c00f0722ac3e283</cites><orcidid>0000-0002-3802-9269 ; 0000-0001-7971-680X ; 0000-0003-3918-7039 ; 0000-0003-2143-2438 ; 0000-0003-1657-209X ; 0000-0002-1274-2605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10053640$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37027574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Lv, Songcen</creatorcontrib><creatorcontrib>Li, Minglei</creatorcontrib><creatorcontrib>Zhang, Jiusi</creatorcontrib><creatorcontrib>Jiang, Yuchen</creatorcontrib><creatorcontrib>Qin, Yong</creatorcontrib><creatorcontrib>Luo, Hao</creatorcontrib><creatorcontrib>Yin, Shen</creatorcontrib><title>SDMT: Spatial Dependence Multi-Task Transformer Network for 3D Knee MRI Segmentation and Landmark Localization</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Knee segmentation and landmark localization from 3D MRI are two significant tasks for diagnosis and treatment of knee diseases. With the development of deep learning, Convolutional Neural Network (CNN) based methods have become the mainstream. However, the existing CNN methods are mostly single-task methods. Due to the complex structure of bone, cartilage and ligament in the knee, it is challenging to complete the segmentation or landmark localization alone. And establishing independent models for all tasks will bring difficulties for surgeon's clinical using. In this paper, a Spatial Dependence Multi-task Transformer (SDMT) network is proposed for 3D knee MRI segmentation and landmark localization. We use a shared encoder for feature extraction, then SDMT utilizes the spatial dependence of segmentation results and landmark position to mutually promote the two tasks. Specifically, SDMT adds spatial encoding to the features, and a task hybrided multi-head attention mechanism is designed, in which the attention heads are divided into the inter-task attention head and the intra-task attention head. The two attention head deal with the spatial dependence between two tasks and correlation within the single task, respectively. Finally, we design a dynamic weight multi-task loss function to balance the training process of two task. The proposed method is validated on our 3D knee MRI multi-task datasets. Dice can reach 83.91% in the segmentation task, and MRE can reach 2.12 mm in the landmark localization task, it is competitive and superior over other state-of-the-art single-task methods.</description><subject>Artificial neural networks</subject><subject>Attention task</subject><subject>Bones</subject><subject>Coders</subject><subject>Convolutional neural network</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image segmentation</subject><subject>Knee</subject><subject>Knee Joint - diagnostic imaging</subject><subject>Knee landmark localization</subject><subject>Knee segmentation</subject><subject>Ligaments</subject><subject>Localization</subject><subject>Location awareness</subject><subject>Machine learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Multi-task learning</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Task analysis</subject><subject>Three-dimensional displays</subject><subject>Transformer</subject><subject>Transformers</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkc2P0zAQxS0EYsvCnQNClrhwSRl_JTY3tGWhogWJBomb5ToTlN3EKXYiBH_9urQgxMUja37zNG8eIU8ZLBkD86rerpccuFgKLislxT2yYErpgiv59T5ZAK90AVDyC_IopRsAJhWYh-RCVLmlKrkgYbfa1q_p7uCmzvV0hQcMDQaPdDv3U1fULt3SOrqQ2jEOGOlHnH6M8ZbmLxUr-iFgRj-v6Q6_DRimLDMG6kJDN_kZXCY3o3d99-t35zF50Lo-4ZNzvSRfrt_WV--Lzad366s3m8ILqaeClw2TjPvsUaFhWmvhVdnyvZDITHYl2sqJvW6Y82j03nAP0ELFufMCuRaX5OVJ9xDH7zOmyQ5d8tj3LuA4J8sroysGZWky-uI_9GacY8jbWa6l1IYbcRSEE-XjmFLE1h5il-39tAzsMQubs7DHLOw5izzy_Cw87wds_g78OX4Gnp2ADhH_0QMlSgniDk94i2o</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Li, Xiang</creator><creator>Lv, Songcen</creator><creator>Li, Minglei</creator><creator>Zhang, Jiusi</creator><creator>Jiang, Yuchen</creator><creator>Qin, Yong</creator><creator>Luo, Hao</creator><creator>Yin, Shen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3802-9269</orcidid><orcidid>https://orcid.org/0000-0001-7971-680X</orcidid><orcidid>https://orcid.org/0000-0003-3918-7039</orcidid><orcidid>https://orcid.org/0000-0003-2143-2438</orcidid><orcidid>https://orcid.org/0000-0003-1657-209X</orcidid><orcidid>https://orcid.org/0000-0002-1274-2605</orcidid></search><sort><creationdate>20230801</creationdate><title>SDMT: Spatial Dependence Multi-Task Transformer Network for 3D Knee MRI Segmentation and Landmark Localization</title><author>Li, Xiang ; Lv, Songcen ; Li, Minglei ; Zhang, Jiusi ; Jiang, Yuchen ; Qin, Yong ; Luo, Hao ; Yin, Shen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-26d1412c1095e918883c56f2b34e192783f7a3b8d1ace98b92c00f0722ac3e283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Attention task</topic><topic>Bones</topic><topic>Coders</topic><topic>Convolutional neural network</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image segmentation</topic><topic>Knee</topic><topic>Knee Joint - diagnostic imaging</topic><topic>Knee landmark localization</topic><topic>Knee segmentation</topic><topic>Ligaments</topic><topic>Localization</topic><topic>Location awareness</topic><topic>Machine learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Multi-task learning</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Task analysis</topic><topic>Three-dimensional displays</topic><topic>Transformer</topic><topic>Transformers</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Lv, Songcen</creatorcontrib><creatorcontrib>Li, Minglei</creatorcontrib><creatorcontrib>Zhang, Jiusi</creatorcontrib><creatorcontrib>Jiang, Yuchen</creatorcontrib><creatorcontrib>Qin, Yong</creatorcontrib><creatorcontrib>Luo, Hao</creatorcontrib><creatorcontrib>Yin, Shen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiang</au><au>Lv, Songcen</au><au>Li, Minglei</au><au>Zhang, Jiusi</au><au>Jiang, Yuchen</au><au>Qin, Yong</au><au>Luo, Hao</au><au>Yin, Shen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SDMT: Spatial Dependence Multi-Task Transformer Network for 3D Knee MRI Segmentation and Landmark Localization</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>42</volume><issue>8</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Knee segmentation and landmark localization from 3D MRI are two significant tasks for diagnosis and treatment of knee diseases. With the development of deep learning, Convolutional Neural Network (CNN) based methods have become the mainstream. However, the existing CNN methods are mostly single-task methods. Due to the complex structure of bone, cartilage and ligament in the knee, it is challenging to complete the segmentation or landmark localization alone. And establishing independent models for all tasks will bring difficulties for surgeon's clinical using. In this paper, a Spatial Dependence Multi-task Transformer (SDMT) network is proposed for 3D knee MRI segmentation and landmark localization. We use a shared encoder for feature extraction, then SDMT utilizes the spatial dependence of segmentation results and landmark position to mutually promote the two tasks. Specifically, SDMT adds spatial encoding to the features, and a task hybrided multi-head attention mechanism is designed, in which the attention heads are divided into the inter-task attention head and the intra-task attention head. The two attention head deal with the spatial dependence between two tasks and correlation within the single task, respectively. Finally, we design a dynamic weight multi-task loss function to balance the training process of two task. The proposed method is validated on our 3D knee MRI multi-task datasets. Dice can reach 83.91% in the segmentation task, and MRE can reach 2.12 mm in the landmark localization task, it is competitive and superior over other state-of-the-art single-task methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37027574</pmid><doi>10.1109/TMI.2023.3247543</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3802-9269</orcidid><orcidid>https://orcid.org/0000-0001-7971-680X</orcidid><orcidid>https://orcid.org/0000-0003-3918-7039</orcidid><orcidid>https://orcid.org/0000-0003-2143-2438</orcidid><orcidid>https://orcid.org/0000-0003-1657-209X</orcidid><orcidid>https://orcid.org/0000-0002-1274-2605</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2023-08, Vol.42 (8), p.1-1 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMI_2023_3247543 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Artificial neural networks Attention task Bones Coders Convolutional neural network Deep learning Feature extraction Image processing Image Processing, Computer-Assisted Image segmentation Knee Knee Joint - diagnostic imaging Knee landmark localization Knee segmentation Ligaments Localization Location awareness Machine learning Magnetic Resonance Imaging Multi-task learning Neural networks Neural Networks, Computer Task analysis Three-dimensional displays Transformer Transformers |
title | SDMT: Spatial Dependence Multi-Task Transformer Network for 3D Knee MRI Segmentation and Landmark Localization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A58%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SDMT:%20Spatial%20Dependence%20Multi-Task%20Transformer%20Network%20for%203D%20Knee%20MRI%20Segmentation%20and%20Landmark%20Localization&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Li,%20Xiang&rft.date=2023-08-01&rft.volume=42&rft.issue=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2023.3247543&rft_dat=%3Cproquest_cross%3E2844892938%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-26d1412c1095e918883c56f2b34e192783f7a3b8d1ace98b92c00f0722ac3e283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2844892938&rft_id=info:pmid/37027574&rft_ieee_id=10053640&rfr_iscdi=true |