Loading…

SDMT: Spatial Dependence Multi-Task Transformer Network for 3D Knee MRI Segmentation and Landmark Localization

Knee segmentation and landmark localization from 3D MRI are two significant tasks for diagnosis and treatment of knee diseases. With the development of deep learning, Convolutional Neural Network (CNN) based methods have become the mainstream. However, the existing CNN methods are mostly single-task...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2023-08, Vol.42 (8), p.1-1
Main Authors: Li, Xiang, Lv, Songcen, Li, Minglei, Zhang, Jiusi, Jiang, Yuchen, Qin, Yong, Luo, Hao, Yin, Shen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c348t-26d1412c1095e918883c56f2b34e192783f7a3b8d1ace98b92c00f0722ac3e283
cites cdi_FETCH-LOGICAL-c348t-26d1412c1095e918883c56f2b34e192783f7a3b8d1ace98b92c00f0722ac3e283
container_end_page 1
container_issue 8
container_start_page 1
container_title IEEE transactions on medical imaging
container_volume 42
creator Li, Xiang
Lv, Songcen
Li, Minglei
Zhang, Jiusi
Jiang, Yuchen
Qin, Yong
Luo, Hao
Yin, Shen
description Knee segmentation and landmark localization from 3D MRI are two significant tasks for diagnosis and treatment of knee diseases. With the development of deep learning, Convolutional Neural Network (CNN) based methods have become the mainstream. However, the existing CNN methods are mostly single-task methods. Due to the complex structure of bone, cartilage and ligament in the knee, it is challenging to complete the segmentation or landmark localization alone. And establishing independent models for all tasks will bring difficulties for surgeon's clinical using. In this paper, a Spatial Dependence Multi-task Transformer (SDMT) network is proposed for 3D knee MRI segmentation and landmark localization. We use a shared encoder for feature extraction, then SDMT utilizes the spatial dependence of segmentation results and landmark position to mutually promote the two tasks. Specifically, SDMT adds spatial encoding to the features, and a task hybrided multi-head attention mechanism is designed, in which the attention heads are divided into the inter-task attention head and the intra-task attention head. The two attention head deal with the spatial dependence between two tasks and correlation within the single task, respectively. Finally, we design a dynamic weight multi-task loss function to balance the training process of two task. The proposed method is validated on our 3D knee MRI multi-task datasets. Dice can reach 83.91% in the segmentation task, and MRE can reach 2.12 mm in the landmark localization task, it is competitive and superior over other state-of-the-art single-task methods.
doi_str_mv 10.1109/TMI.2023.3247543
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMI_2023_3247543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10053640</ieee_id><sourcerecordid>2844892938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-26d1412c1095e918883c56f2b34e192783f7a3b8d1ace98b92c00f0722ac3e283</originalsourceid><addsrcrecordid>eNpdkc2P0zAQxS0EYsvCnQNClrhwSRl_JTY3tGWhogWJBomb5ToTlN3EKXYiBH_9urQgxMUja37zNG8eIU8ZLBkD86rerpccuFgKLislxT2yYErpgiv59T5ZAK90AVDyC_IopRsAJhWYh-RCVLmlKrkgYbfa1q_p7uCmzvV0hQcMDQaPdDv3U1fULt3SOrqQ2jEOGOlHnH6M8ZbmLxUr-iFgRj-v6Q6_DRimLDMG6kJDN_kZXCY3o3d99-t35zF50Lo-4ZNzvSRfrt_WV--Lzad366s3m8ILqaeClw2TjPvsUaFhWmvhVdnyvZDITHYl2sqJvW6Y82j03nAP0ELFufMCuRaX5OVJ9xDH7zOmyQ5d8tj3LuA4J8sroysGZWky-uI_9GacY8jbWa6l1IYbcRSEE-XjmFLE1h5il-39tAzsMQubs7DHLOw5izzy_Cw87wds_g78OX4Gnp2ADhH_0QMlSgniDk94i2o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844892938</pqid></control><display><type>article</type><title>SDMT: Spatial Dependence Multi-Task Transformer Network for 3D Knee MRI Segmentation and Landmark Localization</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Xiang ; Lv, Songcen ; Li, Minglei ; Zhang, Jiusi ; Jiang, Yuchen ; Qin, Yong ; Luo, Hao ; Yin, Shen</creator><creatorcontrib>Li, Xiang ; Lv, Songcen ; Li, Minglei ; Zhang, Jiusi ; Jiang, Yuchen ; Qin, Yong ; Luo, Hao ; Yin, Shen</creatorcontrib><description>Knee segmentation and landmark localization from 3D MRI are two significant tasks for diagnosis and treatment of knee diseases. With the development of deep learning, Convolutional Neural Network (CNN) based methods have become the mainstream. However, the existing CNN methods are mostly single-task methods. Due to the complex structure of bone, cartilage and ligament in the knee, it is challenging to complete the segmentation or landmark localization alone. And establishing independent models for all tasks will bring difficulties for surgeon's clinical using. In this paper, a Spatial Dependence Multi-task Transformer (SDMT) network is proposed for 3D knee MRI segmentation and landmark localization. We use a shared encoder for feature extraction, then SDMT utilizes the spatial dependence of segmentation results and landmark position to mutually promote the two tasks. Specifically, SDMT adds spatial encoding to the features, and a task hybrided multi-head attention mechanism is designed, in which the attention heads are divided into the inter-task attention head and the intra-task attention head. The two attention head deal with the spatial dependence between two tasks and correlation within the single task, respectively. Finally, we design a dynamic weight multi-task loss function to balance the training process of two task. The proposed method is validated on our 3D knee MRI multi-task datasets. Dice can reach 83.91% in the segmentation task, and MRE can reach 2.12 mm in the landmark localization task, it is competitive and superior over other state-of-the-art single-task methods.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2023.3247543</identifier><identifier>PMID: 37027574</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Attention task ; Bones ; Coders ; Convolutional neural network ; Deep learning ; Feature extraction ; Image processing ; Image Processing, Computer-Assisted ; Image segmentation ; Knee ; Knee Joint - diagnostic imaging ; Knee landmark localization ; Knee segmentation ; Ligaments ; Localization ; Location awareness ; Machine learning ; Magnetic Resonance Imaging ; Multi-task learning ; Neural networks ; Neural Networks, Computer ; Task analysis ; Three-dimensional displays ; Transformer ; Transformers</subject><ispartof>IEEE transactions on medical imaging, 2023-08, Vol.42 (8), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-26d1412c1095e918883c56f2b34e192783f7a3b8d1ace98b92c00f0722ac3e283</citedby><cites>FETCH-LOGICAL-c348t-26d1412c1095e918883c56f2b34e192783f7a3b8d1ace98b92c00f0722ac3e283</cites><orcidid>0000-0002-3802-9269 ; 0000-0001-7971-680X ; 0000-0003-3918-7039 ; 0000-0003-2143-2438 ; 0000-0003-1657-209X ; 0000-0002-1274-2605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10053640$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37027574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Lv, Songcen</creatorcontrib><creatorcontrib>Li, Minglei</creatorcontrib><creatorcontrib>Zhang, Jiusi</creatorcontrib><creatorcontrib>Jiang, Yuchen</creatorcontrib><creatorcontrib>Qin, Yong</creatorcontrib><creatorcontrib>Luo, Hao</creatorcontrib><creatorcontrib>Yin, Shen</creatorcontrib><title>SDMT: Spatial Dependence Multi-Task Transformer Network for 3D Knee MRI Segmentation and Landmark Localization</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Knee segmentation and landmark localization from 3D MRI are two significant tasks for diagnosis and treatment of knee diseases. With the development of deep learning, Convolutional Neural Network (CNN) based methods have become the mainstream. However, the existing CNN methods are mostly single-task methods. Due to the complex structure of bone, cartilage and ligament in the knee, it is challenging to complete the segmentation or landmark localization alone. And establishing independent models for all tasks will bring difficulties for surgeon's clinical using. In this paper, a Spatial Dependence Multi-task Transformer (SDMT) network is proposed for 3D knee MRI segmentation and landmark localization. We use a shared encoder for feature extraction, then SDMT utilizes the spatial dependence of segmentation results and landmark position to mutually promote the two tasks. Specifically, SDMT adds spatial encoding to the features, and a task hybrided multi-head attention mechanism is designed, in which the attention heads are divided into the inter-task attention head and the intra-task attention head. The two attention head deal with the spatial dependence between two tasks and correlation within the single task, respectively. Finally, we design a dynamic weight multi-task loss function to balance the training process of two task. The proposed method is validated on our 3D knee MRI multi-task datasets. Dice can reach 83.91% in the segmentation task, and MRE can reach 2.12 mm in the landmark localization task, it is competitive and superior over other state-of-the-art single-task methods.</description><subject>Artificial neural networks</subject><subject>Attention task</subject><subject>Bones</subject><subject>Coders</subject><subject>Convolutional neural network</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image segmentation</subject><subject>Knee</subject><subject>Knee Joint - diagnostic imaging</subject><subject>Knee landmark localization</subject><subject>Knee segmentation</subject><subject>Ligaments</subject><subject>Localization</subject><subject>Location awareness</subject><subject>Machine learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Multi-task learning</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Task analysis</subject><subject>Three-dimensional displays</subject><subject>Transformer</subject><subject>Transformers</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkc2P0zAQxS0EYsvCnQNClrhwSRl_JTY3tGWhogWJBomb5ToTlN3EKXYiBH_9urQgxMUja37zNG8eIU8ZLBkD86rerpccuFgKLislxT2yYErpgiv59T5ZAK90AVDyC_IopRsAJhWYh-RCVLmlKrkgYbfa1q_p7uCmzvV0hQcMDQaPdDv3U1fULt3SOrqQ2jEOGOlHnH6M8ZbmLxUr-iFgRj-v6Q6_DRimLDMG6kJDN_kZXCY3o3d99-t35zF50Lo-4ZNzvSRfrt_WV--Lzad366s3m8ILqaeClw2TjPvsUaFhWmvhVdnyvZDITHYl2sqJvW6Y82j03nAP0ELFufMCuRaX5OVJ9xDH7zOmyQ5d8tj3LuA4J8sroysGZWky-uI_9GacY8jbWa6l1IYbcRSEE-XjmFLE1h5il-39tAzsMQubs7DHLOw5izzy_Cw87wds_g78OX4Gnp2ADhH_0QMlSgniDk94i2o</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Li, Xiang</creator><creator>Lv, Songcen</creator><creator>Li, Minglei</creator><creator>Zhang, Jiusi</creator><creator>Jiang, Yuchen</creator><creator>Qin, Yong</creator><creator>Luo, Hao</creator><creator>Yin, Shen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3802-9269</orcidid><orcidid>https://orcid.org/0000-0001-7971-680X</orcidid><orcidid>https://orcid.org/0000-0003-3918-7039</orcidid><orcidid>https://orcid.org/0000-0003-2143-2438</orcidid><orcidid>https://orcid.org/0000-0003-1657-209X</orcidid><orcidid>https://orcid.org/0000-0002-1274-2605</orcidid></search><sort><creationdate>20230801</creationdate><title>SDMT: Spatial Dependence Multi-Task Transformer Network for 3D Knee MRI Segmentation and Landmark Localization</title><author>Li, Xiang ; Lv, Songcen ; Li, Minglei ; Zhang, Jiusi ; Jiang, Yuchen ; Qin, Yong ; Luo, Hao ; Yin, Shen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-26d1412c1095e918883c56f2b34e192783f7a3b8d1ace98b92c00f0722ac3e283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Attention task</topic><topic>Bones</topic><topic>Coders</topic><topic>Convolutional neural network</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image segmentation</topic><topic>Knee</topic><topic>Knee Joint - diagnostic imaging</topic><topic>Knee landmark localization</topic><topic>Knee segmentation</topic><topic>Ligaments</topic><topic>Localization</topic><topic>Location awareness</topic><topic>Machine learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Multi-task learning</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Task analysis</topic><topic>Three-dimensional displays</topic><topic>Transformer</topic><topic>Transformers</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Lv, Songcen</creatorcontrib><creatorcontrib>Li, Minglei</creatorcontrib><creatorcontrib>Zhang, Jiusi</creatorcontrib><creatorcontrib>Jiang, Yuchen</creatorcontrib><creatorcontrib>Qin, Yong</creatorcontrib><creatorcontrib>Luo, Hao</creatorcontrib><creatorcontrib>Yin, Shen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiang</au><au>Lv, Songcen</au><au>Li, Minglei</au><au>Zhang, Jiusi</au><au>Jiang, Yuchen</au><au>Qin, Yong</au><au>Luo, Hao</au><au>Yin, Shen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SDMT: Spatial Dependence Multi-Task Transformer Network for 3D Knee MRI Segmentation and Landmark Localization</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>42</volume><issue>8</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Knee segmentation and landmark localization from 3D MRI are two significant tasks for diagnosis and treatment of knee diseases. With the development of deep learning, Convolutional Neural Network (CNN) based methods have become the mainstream. However, the existing CNN methods are mostly single-task methods. Due to the complex structure of bone, cartilage and ligament in the knee, it is challenging to complete the segmentation or landmark localization alone. And establishing independent models for all tasks will bring difficulties for surgeon's clinical using. In this paper, a Spatial Dependence Multi-task Transformer (SDMT) network is proposed for 3D knee MRI segmentation and landmark localization. We use a shared encoder for feature extraction, then SDMT utilizes the spatial dependence of segmentation results and landmark position to mutually promote the two tasks. Specifically, SDMT adds spatial encoding to the features, and a task hybrided multi-head attention mechanism is designed, in which the attention heads are divided into the inter-task attention head and the intra-task attention head. The two attention head deal with the spatial dependence between two tasks and correlation within the single task, respectively. Finally, we design a dynamic weight multi-task loss function to balance the training process of two task. The proposed method is validated on our 3D knee MRI multi-task datasets. Dice can reach 83.91% in the segmentation task, and MRE can reach 2.12 mm in the landmark localization task, it is competitive and superior over other state-of-the-art single-task methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37027574</pmid><doi>10.1109/TMI.2023.3247543</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3802-9269</orcidid><orcidid>https://orcid.org/0000-0001-7971-680X</orcidid><orcidid>https://orcid.org/0000-0003-3918-7039</orcidid><orcidid>https://orcid.org/0000-0003-2143-2438</orcidid><orcidid>https://orcid.org/0000-0003-1657-209X</orcidid><orcidid>https://orcid.org/0000-0002-1274-2605</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2023-08, Vol.42 (8), p.1-1
issn 0278-0062
1558-254X
language eng
recordid cdi_crossref_primary_10_1109_TMI_2023_3247543
source IEEE Electronic Library (IEL) Journals
subjects Artificial neural networks
Attention task
Bones
Coders
Convolutional neural network
Deep learning
Feature extraction
Image processing
Image Processing, Computer-Assisted
Image segmentation
Knee
Knee Joint - diagnostic imaging
Knee landmark localization
Knee segmentation
Ligaments
Localization
Location awareness
Machine learning
Magnetic Resonance Imaging
Multi-task learning
Neural networks
Neural Networks, Computer
Task analysis
Three-dimensional displays
Transformer
Transformers
title SDMT: Spatial Dependence Multi-Task Transformer Network for 3D Knee MRI Segmentation and Landmark Localization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A58%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SDMT:%20Spatial%20Dependence%20Multi-Task%20Transformer%20Network%20for%203D%20Knee%20MRI%20Segmentation%20and%20Landmark%20Localization&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Li,%20Xiang&rft.date=2023-08-01&rft.volume=42&rft.issue=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2023.3247543&rft_dat=%3Cproquest_cross%3E2844892938%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-26d1412c1095e918883c56f2b34e192783f7a3b8d1ace98b92c00f0722ac3e283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2844892938&rft_id=info:pmid/37027574&rft_ieee_id=10053640&rfr_iscdi=true