Loading…
VSculpt : a distributed virtual sculpting environment for collaborative design
A collaborative virtual sculpting system supports a team of geographically separated designers/engineers connected by networks to participate in designing three-dimensional (3D) virtual engineering tools or sculptures. It encourages international collaboration at a minimal cost. However, in order fo...
Saved in:
Published in: | IEEE transactions on multimedia 2003-12, Vol.5 (4), p.570-580 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A collaborative virtual sculpting system supports a team of geographically separated designers/engineers connected by networks to participate in designing three-dimensional (3D) virtual engineering tools or sculptures. It encourages international collaboration at a minimal cost. However, in order for the system to be useful, two factors need to be addressed: intuitiveness and real-time interaction. Although a lot of effort has been put into developing virtual sculpting environments, only limited work addresses collaborative virtual sculpting. This is because in order to support real-time collaborative virtual sculpting, many challenging issues need to be addressed. We propose a collaborative virtual sculpting framework, called VSculpt. Through adapting some techniques we developed earlier and integrating them with some techniques developed here, the proposed framework provides a real-time intuitive environment for collaborative design. In particular, it addresses issues on efficient rendering and transmission of deformable objects, intuitive object deformation using the CyberGlove and concurrent object deformation by multiple clients. We demonstrate and evaluate the performance of the proposed framework through a number of experiments. |
---|---|
ISSN: | 1520-9210 1941-0077 |
DOI: | 10.1109/TMM.2003.814795 |