Loading…

Co-Recognition of Multiple Fingertips for Tabletop Human-Projector Interaction

We present a depth-based fingertip recognition method for interactive projectors. We use a depth camera attached to a projector, so it is possible to change the relative pose between the projector and the projection surface without manual recalibration. For detection and classification of fingertips...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on multimedia 2019-06, Vol.21 (6), p.1487-1498
Main Authors: Choi, Ouk, Son, Young-Jun, Lim, Hwasup, Ahn, Sang Chul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-ea7d01e50d0111ad5a5abee910a90f1478e9873d15d830a303b031e9da97cf623
cites cdi_FETCH-LOGICAL-c291t-ea7d01e50d0111ad5a5abee910a90f1478e9873d15d830a303b031e9da97cf623
container_end_page 1498
container_issue 6
container_start_page 1487
container_title IEEE transactions on multimedia
container_volume 21
creator Choi, Ouk
Son, Young-Jun
Lim, Hwasup
Ahn, Sang Chul
description We present a depth-based fingertip recognition method for interactive projectors. We use a depth camera attached to a projector, so it is possible to change the relative pose between the projector and the projection surface without manual recalibration. For detection and classification of fingertips, we propose using cascaded random forests boosted by our 3-D pose-normalized pixel-difference features. The ensemble probabilities from the cascaded random forests are used to define a score function of a subset of detected fingertips. By finding the subset maximizing the score function, the fingertips in the subset are correctly classified, and the remaining incorrectly detected fingertips are rejected. Experiments show that the proposed method outperforms conventional random forest and convolutional neural network classifiers. In addition, our developed applications show the advantage of the proposed method in assigning different roles to different fingers.
doi_str_mv 10.1109/TMM.2018.2880608
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMM_2018_2880608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8528493</ieee_id><sourcerecordid>2230739677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-ea7d01e50d0111ad5a5abee910a90f1478e9873d15d830a303b031e9da97cf623</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsFbvgpeA59SZ3aS7e5RibaFVkXpetsmkpKTZuJsc_Pfd0uJl5sG8Nw8-xh4RJoigXzbr9YQDqglXCqagrtgIdYYpgJTXUeccUs0RbtldCHsAzHKQI_Yxc-k3FW7X1n3t2sRVyXpo-rprKJnX7Y581CGpnE82dttQ77pkMRxsm355t6eij4dl25O3xSl_z24q2wR6uOwx-5m_bWaLdPX5vpy9rtKCa-xTsrIEpBziRLRlbnO7JdIIVkOFmVSklRQl5qUSYAWILQgkXVoti2rKxZg9n_923v0OFHqzd4NvY6XhXIAUeipldMHZVXgXgqfKdL4-WP9nEMyJmonUzImauVCLkadzpCaif7vKucq0EEd25mhI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230739677</pqid></control><display><type>article</type><title>Co-Recognition of Multiple Fingertips for Tabletop Human-Projector Interaction</title><source>IEEE Xplore (Online service)</source><creator>Choi, Ouk ; Son, Young-Jun ; Lim, Hwasup ; Ahn, Sang Chul</creator><creatorcontrib>Choi, Ouk ; Son, Young-Jun ; Lim, Hwasup ; Ahn, Sang Chul</creatorcontrib><description>We present a depth-based fingertip recognition method for interactive projectors. We use a depth camera attached to a projector, so it is possible to change the relative pose between the projector and the projection surface without manual recalibration. For detection and classification of fingertips, we propose using cascaded random forests boosted by our 3-D pose-normalized pixel-difference features. The ensemble probabilities from the cascaded random forests are used to define a score function of a subset of detected fingertips. By finding the subset maximizing the score function, the fingertips in the subset are correctly classified, and the remaining incorrectly detected fingertips are rejected. Experiments show that the proposed method outperforms conventional random forest and convolutional neural network classifiers. In addition, our developed applications show the advantage of the proposed method in assigning different roles to different fingers.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2018.2880608</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Cameras ; depth camera ; fingertip ; Forestry ; Human-projector interaction ; Indexes ; Pose estimation ; Projectors ; random forest ; Recognition ; Surface emitting lasers ; Three-dimensional displays ; Thumb</subject><ispartof>IEEE transactions on multimedia, 2019-06, Vol.21 (6), p.1487-1498</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-ea7d01e50d0111ad5a5abee910a90f1478e9873d15d830a303b031e9da97cf623</citedby><cites>FETCH-LOGICAL-c291t-ea7d01e50d0111ad5a5abee910a90f1478e9873d15d830a303b031e9da97cf623</cites><orcidid>0000-0001-9860-9145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8528493$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Choi, Ouk</creatorcontrib><creatorcontrib>Son, Young-Jun</creatorcontrib><creatorcontrib>Lim, Hwasup</creatorcontrib><creatorcontrib>Ahn, Sang Chul</creatorcontrib><title>Co-Recognition of Multiple Fingertips for Tabletop Human-Projector Interaction</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>We present a depth-based fingertip recognition method for interactive projectors. We use a depth camera attached to a projector, so it is possible to change the relative pose between the projector and the projection surface without manual recalibration. For detection and classification of fingertips, we propose using cascaded random forests boosted by our 3-D pose-normalized pixel-difference features. The ensemble probabilities from the cascaded random forests are used to define a score function of a subset of detected fingertips. By finding the subset maximizing the score function, the fingertips in the subset are correctly classified, and the remaining incorrectly detected fingertips are rejected. Experiments show that the proposed method outperforms conventional random forest and convolutional neural network classifiers. In addition, our developed applications show the advantage of the proposed method in assigning different roles to different fingers.</description><subject>Artificial neural networks</subject><subject>Cameras</subject><subject>depth camera</subject><subject>fingertip</subject><subject>Forestry</subject><subject>Human-projector interaction</subject><subject>Indexes</subject><subject>Pose estimation</subject><subject>Projectors</subject><subject>random forest</subject><subject>Recognition</subject><subject>Surface emitting lasers</subject><subject>Three-dimensional displays</subject><subject>Thumb</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLw0AQhRdRsFbvgpeA59SZ3aS7e5RibaFVkXpetsmkpKTZuJsc_Pfd0uJl5sG8Nw8-xh4RJoigXzbr9YQDqglXCqagrtgIdYYpgJTXUeccUs0RbtldCHsAzHKQI_Yxc-k3FW7X1n3t2sRVyXpo-rprKJnX7Y581CGpnE82dttQ77pkMRxsm355t6eij4dl25O3xSl_z24q2wR6uOwx-5m_bWaLdPX5vpy9rtKCa-xTsrIEpBziRLRlbnO7JdIIVkOFmVSklRQl5qUSYAWILQgkXVoti2rKxZg9n_923v0OFHqzd4NvY6XhXIAUeipldMHZVXgXgqfKdL4-WP9nEMyJmonUzImauVCLkadzpCaif7vKucq0EEd25mhI</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Choi, Ouk</creator><creator>Son, Young-Jun</creator><creator>Lim, Hwasup</creator><creator>Ahn, Sang Chul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9860-9145</orcidid></search><sort><creationdate>20190601</creationdate><title>Co-Recognition of Multiple Fingertips for Tabletop Human-Projector Interaction</title><author>Choi, Ouk ; Son, Young-Jun ; Lim, Hwasup ; Ahn, Sang Chul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-ea7d01e50d0111ad5a5abee910a90f1478e9873d15d830a303b031e9da97cf623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Cameras</topic><topic>depth camera</topic><topic>fingertip</topic><topic>Forestry</topic><topic>Human-projector interaction</topic><topic>Indexes</topic><topic>Pose estimation</topic><topic>Projectors</topic><topic>random forest</topic><topic>Recognition</topic><topic>Surface emitting lasers</topic><topic>Three-dimensional displays</topic><topic>Thumb</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Ouk</creatorcontrib><creatorcontrib>Son, Young-Jun</creatorcontrib><creatorcontrib>Lim, Hwasup</creatorcontrib><creatorcontrib>Ahn, Sang Chul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Ouk</au><au>Son, Young-Jun</au><au>Lim, Hwasup</au><au>Ahn, Sang Chul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co-Recognition of Multiple Fingertips for Tabletop Human-Projector Interaction</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>21</volume><issue>6</issue><spage>1487</spage><epage>1498</epage><pages>1487-1498</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>We present a depth-based fingertip recognition method for interactive projectors. We use a depth camera attached to a projector, so it is possible to change the relative pose between the projector and the projection surface without manual recalibration. For detection and classification of fingertips, we propose using cascaded random forests boosted by our 3-D pose-normalized pixel-difference features. The ensemble probabilities from the cascaded random forests are used to define a score function of a subset of detected fingertips. By finding the subset maximizing the score function, the fingertips in the subset are correctly classified, and the remaining incorrectly detected fingertips are rejected. Experiments show that the proposed method outperforms conventional random forest and convolutional neural network classifiers. In addition, our developed applications show the advantage of the proposed method in assigning different roles to different fingers.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2018.2880608</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9860-9145</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2019-06, Vol.21 (6), p.1487-1498
issn 1520-9210
1941-0077
language eng
recordid cdi_crossref_primary_10_1109_TMM_2018_2880608
source IEEE Xplore (Online service)
subjects Artificial neural networks
Cameras
depth camera
fingertip
Forestry
Human-projector interaction
Indexes
Pose estimation
Projectors
random forest
Recognition
Surface emitting lasers
Three-dimensional displays
Thumb
title Co-Recognition of Multiple Fingertips for Tabletop Human-Projector Interaction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A57%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co-Recognition%20of%20Multiple%20Fingertips%20for%20Tabletop%20Human-Projector%20Interaction&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Choi,%20Ouk&rft.date=2019-06-01&rft.volume=21&rft.issue=6&rft.spage=1487&rft.epage=1498&rft.pages=1487-1498&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2018.2880608&rft_dat=%3Cproquest_cross%3E2230739677%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-ea7d01e50d0111ad5a5abee910a90f1478e9873d15d830a303b031e9da97cf623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2230739677&rft_id=info:pmid/&rft_ieee_id=8528493&rfr_iscdi=true