Loading…
Co-Recognition of Multiple Fingertips for Tabletop Human-Projector Interaction
We present a depth-based fingertip recognition method for interactive projectors. We use a depth camera attached to a projector, so it is possible to change the relative pose between the projector and the projection surface without manual recalibration. For detection and classification of fingertips...
Saved in:
Published in: | IEEE transactions on multimedia 2019-06, Vol.21 (6), p.1487-1498 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-ea7d01e50d0111ad5a5abee910a90f1478e9873d15d830a303b031e9da97cf623 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-ea7d01e50d0111ad5a5abee910a90f1478e9873d15d830a303b031e9da97cf623 |
container_end_page | 1498 |
container_issue | 6 |
container_start_page | 1487 |
container_title | IEEE transactions on multimedia |
container_volume | 21 |
creator | Choi, Ouk Son, Young-Jun Lim, Hwasup Ahn, Sang Chul |
description | We present a depth-based fingertip recognition method for interactive projectors. We use a depth camera attached to a projector, so it is possible to change the relative pose between the projector and the projection surface without manual recalibration. For detection and classification of fingertips, we propose using cascaded random forests boosted by our 3-D pose-normalized pixel-difference features. The ensemble probabilities from the cascaded random forests are used to define a score function of a subset of detected fingertips. By finding the subset maximizing the score function, the fingertips in the subset are correctly classified, and the remaining incorrectly detected fingertips are rejected. Experiments show that the proposed method outperforms conventional random forest and convolutional neural network classifiers. In addition, our developed applications show the advantage of the proposed method in assigning different roles to different fingers. |
doi_str_mv | 10.1109/TMM.2018.2880608 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMM_2018_2880608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8528493</ieee_id><sourcerecordid>2230739677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-ea7d01e50d0111ad5a5abee910a90f1478e9873d15d830a303b031e9da97cf623</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsFbvgpeA59SZ3aS7e5RibaFVkXpetsmkpKTZuJsc_Pfd0uJl5sG8Nw8-xh4RJoigXzbr9YQDqglXCqagrtgIdYYpgJTXUeccUs0RbtldCHsAzHKQI_Yxc-k3FW7X1n3t2sRVyXpo-rprKJnX7Y581CGpnE82dttQ77pkMRxsm355t6eij4dl25O3xSl_z24q2wR6uOwx-5m_bWaLdPX5vpy9rtKCa-xTsrIEpBziRLRlbnO7JdIIVkOFmVSklRQl5qUSYAWILQgkXVoti2rKxZg9n_923v0OFHqzd4NvY6XhXIAUeipldMHZVXgXgqfKdL4-WP9nEMyJmonUzImauVCLkadzpCaif7vKucq0EEd25mhI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230739677</pqid></control><display><type>article</type><title>Co-Recognition of Multiple Fingertips for Tabletop Human-Projector Interaction</title><source>IEEE Xplore (Online service)</source><creator>Choi, Ouk ; Son, Young-Jun ; Lim, Hwasup ; Ahn, Sang Chul</creator><creatorcontrib>Choi, Ouk ; Son, Young-Jun ; Lim, Hwasup ; Ahn, Sang Chul</creatorcontrib><description>We present a depth-based fingertip recognition method for interactive projectors. We use a depth camera attached to a projector, so it is possible to change the relative pose between the projector and the projection surface without manual recalibration. For detection and classification of fingertips, we propose using cascaded random forests boosted by our 3-D pose-normalized pixel-difference features. The ensemble probabilities from the cascaded random forests are used to define a score function of a subset of detected fingertips. By finding the subset maximizing the score function, the fingertips in the subset are correctly classified, and the remaining incorrectly detected fingertips are rejected. Experiments show that the proposed method outperforms conventional random forest and convolutional neural network classifiers. In addition, our developed applications show the advantage of the proposed method in assigning different roles to different fingers.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2018.2880608</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Cameras ; depth camera ; fingertip ; Forestry ; Human-projector interaction ; Indexes ; Pose estimation ; Projectors ; random forest ; Recognition ; Surface emitting lasers ; Three-dimensional displays ; Thumb</subject><ispartof>IEEE transactions on multimedia, 2019-06, Vol.21 (6), p.1487-1498</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-ea7d01e50d0111ad5a5abee910a90f1478e9873d15d830a303b031e9da97cf623</citedby><cites>FETCH-LOGICAL-c291t-ea7d01e50d0111ad5a5abee910a90f1478e9873d15d830a303b031e9da97cf623</cites><orcidid>0000-0001-9860-9145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8528493$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Choi, Ouk</creatorcontrib><creatorcontrib>Son, Young-Jun</creatorcontrib><creatorcontrib>Lim, Hwasup</creatorcontrib><creatorcontrib>Ahn, Sang Chul</creatorcontrib><title>Co-Recognition of Multiple Fingertips for Tabletop Human-Projector Interaction</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>We present a depth-based fingertip recognition method for interactive projectors. We use a depth camera attached to a projector, so it is possible to change the relative pose between the projector and the projection surface without manual recalibration. For detection and classification of fingertips, we propose using cascaded random forests boosted by our 3-D pose-normalized pixel-difference features. The ensemble probabilities from the cascaded random forests are used to define a score function of a subset of detected fingertips. By finding the subset maximizing the score function, the fingertips in the subset are correctly classified, and the remaining incorrectly detected fingertips are rejected. Experiments show that the proposed method outperforms conventional random forest and convolutional neural network classifiers. In addition, our developed applications show the advantage of the proposed method in assigning different roles to different fingers.</description><subject>Artificial neural networks</subject><subject>Cameras</subject><subject>depth camera</subject><subject>fingertip</subject><subject>Forestry</subject><subject>Human-projector interaction</subject><subject>Indexes</subject><subject>Pose estimation</subject><subject>Projectors</subject><subject>random forest</subject><subject>Recognition</subject><subject>Surface emitting lasers</subject><subject>Three-dimensional displays</subject><subject>Thumb</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLw0AQhRdRsFbvgpeA59SZ3aS7e5RibaFVkXpetsmkpKTZuJsc_Pfd0uJl5sG8Nw8-xh4RJoigXzbr9YQDqglXCqagrtgIdYYpgJTXUeccUs0RbtldCHsAzHKQI_Yxc-k3FW7X1n3t2sRVyXpo-rprKJnX7Y581CGpnE82dttQ77pkMRxsm355t6eij4dl25O3xSl_z24q2wR6uOwx-5m_bWaLdPX5vpy9rtKCa-xTsrIEpBziRLRlbnO7JdIIVkOFmVSklRQl5qUSYAWILQgkXVoti2rKxZg9n_923v0OFHqzd4NvY6XhXIAUeipldMHZVXgXgqfKdL4-WP9nEMyJmonUzImauVCLkadzpCaif7vKucq0EEd25mhI</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Choi, Ouk</creator><creator>Son, Young-Jun</creator><creator>Lim, Hwasup</creator><creator>Ahn, Sang Chul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9860-9145</orcidid></search><sort><creationdate>20190601</creationdate><title>Co-Recognition of Multiple Fingertips for Tabletop Human-Projector Interaction</title><author>Choi, Ouk ; Son, Young-Jun ; Lim, Hwasup ; Ahn, Sang Chul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-ea7d01e50d0111ad5a5abee910a90f1478e9873d15d830a303b031e9da97cf623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Cameras</topic><topic>depth camera</topic><topic>fingertip</topic><topic>Forestry</topic><topic>Human-projector interaction</topic><topic>Indexes</topic><topic>Pose estimation</topic><topic>Projectors</topic><topic>random forest</topic><topic>Recognition</topic><topic>Surface emitting lasers</topic><topic>Three-dimensional displays</topic><topic>Thumb</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Ouk</creatorcontrib><creatorcontrib>Son, Young-Jun</creatorcontrib><creatorcontrib>Lim, Hwasup</creatorcontrib><creatorcontrib>Ahn, Sang Chul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Ouk</au><au>Son, Young-Jun</au><au>Lim, Hwasup</au><au>Ahn, Sang Chul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co-Recognition of Multiple Fingertips for Tabletop Human-Projector Interaction</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>21</volume><issue>6</issue><spage>1487</spage><epage>1498</epage><pages>1487-1498</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>We present a depth-based fingertip recognition method for interactive projectors. We use a depth camera attached to a projector, so it is possible to change the relative pose between the projector and the projection surface without manual recalibration. For detection and classification of fingertips, we propose using cascaded random forests boosted by our 3-D pose-normalized pixel-difference features. The ensemble probabilities from the cascaded random forests are used to define a score function of a subset of detected fingertips. By finding the subset maximizing the score function, the fingertips in the subset are correctly classified, and the remaining incorrectly detected fingertips are rejected. Experiments show that the proposed method outperforms conventional random forest and convolutional neural network classifiers. In addition, our developed applications show the advantage of the proposed method in assigning different roles to different fingers.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2018.2880608</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9860-9145</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2019-06, Vol.21 (6), p.1487-1498 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMM_2018_2880608 |
source | IEEE Xplore (Online service) |
subjects | Artificial neural networks Cameras depth camera fingertip Forestry Human-projector interaction Indexes Pose estimation Projectors random forest Recognition Surface emitting lasers Three-dimensional displays Thumb |
title | Co-Recognition of Multiple Fingertips for Tabletop Human-Projector Interaction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A57%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co-Recognition%20of%20Multiple%20Fingertips%20for%20Tabletop%20Human-Projector%20Interaction&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Choi,%20Ouk&rft.date=2019-06-01&rft.volume=21&rft.issue=6&rft.spage=1487&rft.epage=1498&rft.pages=1487-1498&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2018.2880608&rft_dat=%3Cproquest_cross%3E2230739677%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-ea7d01e50d0111ad5a5abee910a90f1478e9873d15d830a303b031e9da97cf623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2230739677&rft_id=info:pmid/&rft_ieee_id=8528493&rfr_iscdi=true |