Loading…
Generate and Purify: Efficient Person Data Generation for Re-Identification
Generating person images has been a promising approach to enhance the input richness for re-identification (reID) tasks in recent works. A key challenge is that the generated data often contains noise, which is caused by identity inconsistency between the generated person and the original input and...
Saved in:
Published in: | IEEE transactions on multimedia 2022, Vol.24, p.558-566 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-ee47d75dee6c01743fcbc6a9f882bfadef18245613508a933ec2c5b14145caa33 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-ee47d75dee6c01743fcbc6a9f882bfadef18245613508a933ec2c5b14145caa33 |
container_end_page | 566 |
container_issue | |
container_start_page | 558 |
container_title | IEEE transactions on multimedia |
container_volume | 24 |
creator | Lu, Jianjie Zhang, Weidong Yin, Haibing |
description | Generating person images has been a promising approach to enhance the input richness for re-identification (reID) tasks in recent works. A key challenge is that the generated data often contains noise, which is caused by identity inconsistency between the generated person and the original input and failure cases in generative adversarial networks (GAN). Directly training using generated images may greatly affect learning good feature embeddings, resulting in unsatisfactory reID performance. This work presents a two-stage framework that can generate high-quality person images and purify failure cases for reID training. Experimental results demonstrate that our proposed generative model can produce person images with superior appearance consistency comparing with other state-of-the-art methods. Furthermore, we show that our method yields a significant improvement in re-identification (reID) task on public datasets with insufficient training data. |
doi_str_mv | 10.1109/TMM.2021.3054973 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMM_2021_3054973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9337217</ieee_id><sourcerecordid>2626977922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-ee47d75dee6c01743fcbc6a9f882bfadef18245613508a933ec2c5b14145caa33</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89aZZLPZeJNaa7HFIvUc0uwEtuhuzW4P_e9NbfE0H_zezOMxdoswQgTzsFosRgIEjiSo3Gh5xgZocswAtD5PvRKQGYFwya66bgOAuQI9YG9Taii6nrhrKr7cxTrsH_kkhNrX1PR8SbFrG_7sesdPaJ3m0Eb-QdmsSkyd2L_tNbsI7qujm1Mdss-XyWr8ms3fp7Px0zzzwmCfEeW60qoiKjygzmXwa184E8pSrIOrKGApclWgVFA6IyV54dUa82TZOyflkN0f725j-7Ojrrebdheb9NKKQhRGayNEouBI-dh2XaRgt7H-dnFvEewhMpsis4fI7CmyJLk7Smoi-seTAy1Qy1-bWWb3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626977922</pqid></control><display><type>article</type><title>Generate and Purify: Efficient Person Data Generation for Re-Identification</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lu, Jianjie ; Zhang, Weidong ; Yin, Haibing</creator><creatorcontrib>Lu, Jianjie ; Zhang, Weidong ; Yin, Haibing</creatorcontrib><description>Generating person images has been a promising approach to enhance the input richness for re-identification (reID) tasks in recent works. A key challenge is that the generated data often contains noise, which is caused by identity inconsistency between the generated person and the original input and failure cases in generative adversarial networks (GAN). Directly training using generated images may greatly affect learning good feature embeddings, resulting in unsatisfactory reID performance. This work presents a two-stage framework that can generate high-quality person images and purify failure cases for reID training. Experimental results demonstrate that our proposed generative model can produce person images with superior appearance consistency comparing with other state-of-the-art methods. Furthermore, we show that our method yields a significant improvement in re-identification (reID) task on public datasets with insufficient training data.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2021.3054973</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Convolutional codes ; Data models ; Generative adversarial networks ; Graph clustering ; Heating systems ; Image enhancement ; Image quality ; Image synthesis ; person generation ; re-identification ; Training ; Training data</subject><ispartof>IEEE transactions on multimedia, 2022, Vol.24, p.558-566</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-ee47d75dee6c01743fcbc6a9f882bfadef18245613508a933ec2c5b14145caa33</citedby><cites>FETCH-LOGICAL-c291t-ee47d75dee6c01743fcbc6a9f882bfadef18245613508a933ec2c5b14145caa33</cites><orcidid>0000-0001-8140-9681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9337217$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4023,27922,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Lu, Jianjie</creatorcontrib><creatorcontrib>Zhang, Weidong</creatorcontrib><creatorcontrib>Yin, Haibing</creatorcontrib><title>Generate and Purify: Efficient Person Data Generation for Re-Identification</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Generating person images has been a promising approach to enhance the input richness for re-identification (reID) tasks in recent works. A key challenge is that the generated data often contains noise, which is caused by identity inconsistency between the generated person and the original input and failure cases in generative adversarial networks (GAN). Directly training using generated images may greatly affect learning good feature embeddings, resulting in unsatisfactory reID performance. This work presents a two-stage framework that can generate high-quality person images and purify failure cases for reID training. Experimental results demonstrate that our proposed generative model can produce person images with superior appearance consistency comparing with other state-of-the-art methods. Furthermore, we show that our method yields a significant improvement in re-identification (reID) task on public datasets with insufficient training data.</description><subject>Convolutional codes</subject><subject>Data models</subject><subject>Generative adversarial networks</subject><subject>Graph clustering</subject><subject>Heating systems</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Image synthesis</subject><subject>person generation</subject><subject>re-identification</subject><subject>Training</subject><subject>Training data</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89aZZLPZeJNaa7HFIvUc0uwEtuhuzW4P_e9NbfE0H_zezOMxdoswQgTzsFosRgIEjiSo3Gh5xgZocswAtD5PvRKQGYFwya66bgOAuQI9YG9Taii6nrhrKr7cxTrsH_kkhNrX1PR8SbFrG_7sesdPaJ3m0Eb-QdmsSkyd2L_tNbsI7qujm1Mdss-XyWr8ms3fp7Px0zzzwmCfEeW60qoiKjygzmXwa184E8pSrIOrKGApclWgVFA6IyV54dUa82TZOyflkN0f725j-7Ojrrebdheb9NKKQhRGayNEouBI-dh2XaRgt7H-dnFvEewhMpsis4fI7CmyJLk7Smoi-seTAy1Qy1-bWWb3</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Lu, Jianjie</creator><creator>Zhang, Weidong</creator><creator>Yin, Haibing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8140-9681</orcidid></search><sort><creationdate>2022</creationdate><title>Generate and Purify: Efficient Person Data Generation for Re-Identification</title><author>Lu, Jianjie ; Zhang, Weidong ; Yin, Haibing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-ee47d75dee6c01743fcbc6a9f882bfadef18245613508a933ec2c5b14145caa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convolutional codes</topic><topic>Data models</topic><topic>Generative adversarial networks</topic><topic>Graph clustering</topic><topic>Heating systems</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Image synthesis</topic><topic>person generation</topic><topic>re-identification</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Jianjie</creatorcontrib><creatorcontrib>Zhang, Weidong</creatorcontrib><creatorcontrib>Yin, Haibing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Jianjie</au><au>Zhang, Weidong</au><au>Yin, Haibing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generate and Purify: Efficient Person Data Generation for Re-Identification</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2022</date><risdate>2022</risdate><volume>24</volume><spage>558</spage><epage>566</epage><pages>558-566</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Generating person images has been a promising approach to enhance the input richness for re-identification (reID) tasks in recent works. A key challenge is that the generated data often contains noise, which is caused by identity inconsistency between the generated person and the original input and failure cases in generative adversarial networks (GAN). Directly training using generated images may greatly affect learning good feature embeddings, resulting in unsatisfactory reID performance. This work presents a two-stage framework that can generate high-quality person images and purify failure cases for reID training. Experimental results demonstrate that our proposed generative model can produce person images with superior appearance consistency comparing with other state-of-the-art methods. Furthermore, we show that our method yields a significant improvement in re-identification (reID) task on public datasets with insufficient training data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2021.3054973</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8140-9681</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2022, Vol.24, p.558-566 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMM_2021_3054973 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Convolutional codes Data models Generative adversarial networks Graph clustering Heating systems Image enhancement Image quality Image synthesis person generation re-identification Training Training data |
title | Generate and Purify: Efficient Person Data Generation for Re-Identification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generate%20and%20Purify:%20Efficient%20Person%20Data%20Generation%20for%20Re-Identification&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Lu,%20Jianjie&rft.date=2022&rft.volume=24&rft.spage=558&rft.epage=566&rft.pages=558-566&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2021.3054973&rft_dat=%3Cproquest_cross%3E2626977922%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-ee47d75dee6c01743fcbc6a9f882bfadef18245613508a933ec2c5b14145caa33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2626977922&rft_id=info:pmid/&rft_ieee_id=9337217&rfr_iscdi=true |