Loading…

Generate and Purify: Efficient Person Data Generation for Re-Identification

Generating person images has been a promising approach to enhance the input richness for re-identification (reID) tasks in recent works. A key challenge is that the generated data often contains noise, which is caused by identity inconsistency between the generated person and the original input and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on multimedia 2022, Vol.24, p.558-566
Main Authors: Lu, Jianjie, Zhang, Weidong, Yin, Haibing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-ee47d75dee6c01743fcbc6a9f882bfadef18245613508a933ec2c5b14145caa33
cites cdi_FETCH-LOGICAL-c291t-ee47d75dee6c01743fcbc6a9f882bfadef18245613508a933ec2c5b14145caa33
container_end_page 566
container_issue
container_start_page 558
container_title IEEE transactions on multimedia
container_volume 24
creator Lu, Jianjie
Zhang, Weidong
Yin, Haibing
description Generating person images has been a promising approach to enhance the input richness for re-identification (reID) tasks in recent works. A key challenge is that the generated data often contains noise, which is caused by identity inconsistency between the generated person and the original input and failure cases in generative adversarial networks (GAN). Directly training using generated images may greatly affect learning good feature embeddings, resulting in unsatisfactory reID performance. This work presents a two-stage framework that can generate high-quality person images and purify failure cases for reID training. Experimental results demonstrate that our proposed generative model can produce person images with superior appearance consistency comparing with other state-of-the-art methods. Furthermore, we show that our method yields a significant improvement in re-identification (reID) task on public datasets with insufficient training data.
doi_str_mv 10.1109/TMM.2021.3054973
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMM_2021_3054973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9337217</ieee_id><sourcerecordid>2626977922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-ee47d75dee6c01743fcbc6a9f882bfadef18245613508a933ec2c5b14145caa33</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89aZZLPZeJNaa7HFIvUc0uwEtuhuzW4P_e9NbfE0H_zezOMxdoswQgTzsFosRgIEjiSo3Gh5xgZocswAtD5PvRKQGYFwya66bgOAuQI9YG9Taii6nrhrKr7cxTrsH_kkhNrX1PR8SbFrG_7sesdPaJ3m0Eb-QdmsSkyd2L_tNbsI7qujm1Mdss-XyWr8ms3fp7Px0zzzwmCfEeW60qoiKjygzmXwa184E8pSrIOrKGApclWgVFA6IyV54dUa82TZOyflkN0f725j-7Ojrrebdheb9NKKQhRGayNEouBI-dh2XaRgt7H-dnFvEewhMpsis4fI7CmyJLk7Smoi-seTAy1Qy1-bWWb3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626977922</pqid></control><display><type>article</type><title>Generate and Purify: Efficient Person Data Generation for Re-Identification</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lu, Jianjie ; Zhang, Weidong ; Yin, Haibing</creator><creatorcontrib>Lu, Jianjie ; Zhang, Weidong ; Yin, Haibing</creatorcontrib><description>Generating person images has been a promising approach to enhance the input richness for re-identification (reID) tasks in recent works. A key challenge is that the generated data often contains noise, which is caused by identity inconsistency between the generated person and the original input and failure cases in generative adversarial networks (GAN). Directly training using generated images may greatly affect learning good feature embeddings, resulting in unsatisfactory reID performance. This work presents a two-stage framework that can generate high-quality person images and purify failure cases for reID training. Experimental results demonstrate that our proposed generative model can produce person images with superior appearance consistency comparing with other state-of-the-art methods. Furthermore, we show that our method yields a significant improvement in re-identification (reID) task on public datasets with insufficient training data.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2021.3054973</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Convolutional codes ; Data models ; Generative adversarial networks ; Graph clustering ; Heating systems ; Image enhancement ; Image quality ; Image synthesis ; person generation ; re-identification ; Training ; Training data</subject><ispartof>IEEE transactions on multimedia, 2022, Vol.24, p.558-566</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-ee47d75dee6c01743fcbc6a9f882bfadef18245613508a933ec2c5b14145caa33</citedby><cites>FETCH-LOGICAL-c291t-ee47d75dee6c01743fcbc6a9f882bfadef18245613508a933ec2c5b14145caa33</cites><orcidid>0000-0001-8140-9681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9337217$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4023,27922,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Lu, Jianjie</creatorcontrib><creatorcontrib>Zhang, Weidong</creatorcontrib><creatorcontrib>Yin, Haibing</creatorcontrib><title>Generate and Purify: Efficient Person Data Generation for Re-Identification</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Generating person images has been a promising approach to enhance the input richness for re-identification (reID) tasks in recent works. A key challenge is that the generated data often contains noise, which is caused by identity inconsistency between the generated person and the original input and failure cases in generative adversarial networks (GAN). Directly training using generated images may greatly affect learning good feature embeddings, resulting in unsatisfactory reID performance. This work presents a two-stage framework that can generate high-quality person images and purify failure cases for reID training. Experimental results demonstrate that our proposed generative model can produce person images with superior appearance consistency comparing with other state-of-the-art methods. Furthermore, we show that our method yields a significant improvement in re-identification (reID) task on public datasets with insufficient training data.</description><subject>Convolutional codes</subject><subject>Data models</subject><subject>Generative adversarial networks</subject><subject>Graph clustering</subject><subject>Heating systems</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Image synthesis</subject><subject>person generation</subject><subject>re-identification</subject><subject>Training</subject><subject>Training data</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89aZZLPZeJNaa7HFIvUc0uwEtuhuzW4P_e9NbfE0H_zezOMxdoswQgTzsFosRgIEjiSo3Gh5xgZocswAtD5PvRKQGYFwya66bgOAuQI9YG9Taii6nrhrKr7cxTrsH_kkhNrX1PR8SbFrG_7sesdPaJ3m0Eb-QdmsSkyd2L_tNbsI7qujm1Mdss-XyWr8ms3fp7Px0zzzwmCfEeW60qoiKjygzmXwa184E8pSrIOrKGApclWgVFA6IyV54dUa82TZOyflkN0f725j-7Ojrrebdheb9NKKQhRGayNEouBI-dh2XaRgt7H-dnFvEewhMpsis4fI7CmyJLk7Smoi-seTAy1Qy1-bWWb3</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Lu, Jianjie</creator><creator>Zhang, Weidong</creator><creator>Yin, Haibing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8140-9681</orcidid></search><sort><creationdate>2022</creationdate><title>Generate and Purify: Efficient Person Data Generation for Re-Identification</title><author>Lu, Jianjie ; Zhang, Weidong ; Yin, Haibing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-ee47d75dee6c01743fcbc6a9f882bfadef18245613508a933ec2c5b14145caa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convolutional codes</topic><topic>Data models</topic><topic>Generative adversarial networks</topic><topic>Graph clustering</topic><topic>Heating systems</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Image synthesis</topic><topic>person generation</topic><topic>re-identification</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Jianjie</creatorcontrib><creatorcontrib>Zhang, Weidong</creatorcontrib><creatorcontrib>Yin, Haibing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Jianjie</au><au>Zhang, Weidong</au><au>Yin, Haibing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generate and Purify: Efficient Person Data Generation for Re-Identification</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2022</date><risdate>2022</risdate><volume>24</volume><spage>558</spage><epage>566</epage><pages>558-566</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Generating person images has been a promising approach to enhance the input richness for re-identification (reID) tasks in recent works. A key challenge is that the generated data often contains noise, which is caused by identity inconsistency between the generated person and the original input and failure cases in generative adversarial networks (GAN). Directly training using generated images may greatly affect learning good feature embeddings, resulting in unsatisfactory reID performance. This work presents a two-stage framework that can generate high-quality person images and purify failure cases for reID training. Experimental results demonstrate that our proposed generative model can produce person images with superior appearance consistency comparing with other state-of-the-art methods. Furthermore, we show that our method yields a significant improvement in re-identification (reID) task on public datasets with insufficient training data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2021.3054973</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8140-9681</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2022, Vol.24, p.558-566
issn 1520-9210
1941-0077
language eng
recordid cdi_crossref_primary_10_1109_TMM_2021_3054973
source IEEE Electronic Library (IEL) Journals
subjects Convolutional codes
Data models
Generative adversarial networks
Graph clustering
Heating systems
Image enhancement
Image quality
Image synthesis
person generation
re-identification
Training
Training data
title Generate and Purify: Efficient Person Data Generation for Re-Identification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generate%20and%20Purify:%20Efficient%20Person%20Data%20Generation%20for%20Re-Identification&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Lu,%20Jianjie&rft.date=2022&rft.volume=24&rft.spage=558&rft.epage=566&rft.pages=558-566&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2021.3054973&rft_dat=%3Cproquest_cross%3E2626977922%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-ee47d75dee6c01743fcbc6a9f882bfadef18245613508a933ec2c5b14145caa33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2626977922&rft_id=info:pmid/&rft_ieee_id=9337217&rfr_iscdi=true