Loading…
Timely and Accurate Bitrate Switching in HTTP Adaptive Streaming With Date-Driven I-Frame Prediction
In today's Internet, bandwidth dynamics are inevitable, and hence, the bitrate for live streaming applications should also be dynamically adjusted. However, in existing HTTP-based adaptive streaming (HAS), bitrate switching can only be performed at segment boundaries, making decisions unrespons...
Saved in:
Published in: | IEEE transactions on multimedia 2023, Vol.25, p.3753-3762 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-120d120782727099de8cc6c32f785f45f71000eed715320983dfea1ce5df6e313 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-120d120782727099de8cc6c32f785f45f71000eed715320983dfea1ce5df6e313 |
container_end_page | 3762 |
container_issue | |
container_start_page | 3753 |
container_title | IEEE transactions on multimedia |
container_volume | 25 |
creator | Feng, Tongtong Qi, Qi Wang, Jingyu Liao, Jianxin Liu, Jiangchuan |
description | In today's Internet, bandwidth dynamics are inevitable, and hence, the bitrate for live streaming applications should also be dynamically adjusted. However, in existing HTTP-based adaptive streaming (HAS), bitrate switching can only be performed at segment boundaries, making decisions unresponsive and often inaccurate. In this paper, we start from a close investigation on the impact of the segment length in HAS and accordingly present VHAS , an extension towards intelligent variable-length segmentation, which makes client-side decisions based on the massive amount of real-time information from the network and viewers. VHAS implements a smart trigger mechanism that balances accuracy and overhead for variable-length segmentation. We further develop an adaptive bitrate switching algorithm with data-driven I-frame prediction, which is tailored to individual viewers to minimize bitrate mismatches. We evaluate VHAS via extensive trace-driven simulations, and our results demonstrate that compared with state-of-the-art solutions, VHAS achieves 15%-49% gains in QoE, with a noticeable bandwidth reduction of 37%-57%. |
doi_str_mv | 10.1109/TMM.2022.3165381 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMM_2022_3165381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9750555</ieee_id><sourcerecordid>2862640412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-120d120782727099de8cc6c32f785f45f71000eed715320983dfea1ce5df6e313</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsFbvgpcFz6kzm2w2OdbW2kKLBSMeQ9id2C1NWjdbpf_erRUPwxt4783Ax9gtwgAR8odisRgIEGIQYyrjDM9YD_MEIwClzsMuBUS5QLhkV123BsBEguoxU9iGNgdetYYPtd67yhN_tP5XX7-t1yvbfnDb8mlRLPnQVDtvv4LlHVXN0Xq3fsXHIR6NXXBaPosmrmqILx0Zq73dttfsoq42Hd38aZ-9TZ6K0TSavzzPRsN5pEWOPkIBJozKhBIK8txQpnWqY1GrTNaJrBUCAJFRKGMBeRabmirUJE2dUoxxn92f7u7c9nNPnS_X271rw8tSZKlIE0hQhBScUtptu85RXe6cbSp3KBHKI8sysCyPLMs_lqFyd6pYIvqP50qClDL-AWJPbkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862640412</pqid></control><display><type>article</type><title>Timely and Accurate Bitrate Switching in HTTP Adaptive Streaming With Date-Driven I-Frame Prediction</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Feng, Tongtong ; Qi, Qi ; Wang, Jingyu ; Liao, Jianxin ; Liu, Jiangchuan</creator><creatorcontrib>Feng, Tongtong ; Qi, Qi ; Wang, Jingyu ; Liao, Jianxin ; Liu, Jiangchuan</creatorcontrib><description>In today's Internet, bandwidth dynamics are inevitable, and hence, the bitrate for live streaming applications should also be dynamically adjusted. However, in existing HTTP-based adaptive streaming (HAS), bitrate switching can only be performed at segment boundaries, making decisions unresponsive and often inaccurate. In this paper, we start from a close investigation on the impact of the segment length in HAS and accordingly present VHAS , an extension towards intelligent variable-length segmentation, which makes client-side decisions based on the massive amount of real-time information from the network and viewers. VHAS implements a smart trigger mechanism that balances accuracy and overhead for variable-length segmentation. We further develop an adaptive bitrate switching algorithm with data-driven I-frame prediction, which is tailored to individual viewers to minimize bitrate mismatches. We evaluate VHAS via extensive trace-driven simulations, and our results demonstrate that compared with state-of-the-art solutions, VHAS achieves 15%-49% gains in QoE, with a noticeable bandwidth reduction of 37%-57%.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2022.3165381</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive algorithms ; Bandwidth ; Bit rate ; bitrate switching ; Decisions ; HTTP adaptive streaming ; I-frame prediction ; Quality of experience ; reinforcement learning ; Segmentation ; Segments ; Servers ; Streaming media ; Switches ; Switching theory</subject><ispartof>IEEE transactions on multimedia, 2023, Vol.25, p.3753-3762</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-120d120782727099de8cc6c32f785f45f71000eed715320983dfea1ce5df6e313</citedby><cites>FETCH-LOGICAL-c291t-120d120782727099de8cc6c32f785f45f71000eed715320983dfea1ce5df6e313</cites><orcidid>0000-0003-4734-5607 ; 0000-0003-1486-0573 ; 0000-0001-6592-1984 ; 0000-0003-0829-4624 ; 0000-0002-2182-2228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9750555$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4021,27921,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Feng, Tongtong</creatorcontrib><creatorcontrib>Qi, Qi</creatorcontrib><creatorcontrib>Wang, Jingyu</creatorcontrib><creatorcontrib>Liao, Jianxin</creatorcontrib><creatorcontrib>Liu, Jiangchuan</creatorcontrib><title>Timely and Accurate Bitrate Switching in HTTP Adaptive Streaming With Date-Driven I-Frame Prediction</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>In today's Internet, bandwidth dynamics are inevitable, and hence, the bitrate for live streaming applications should also be dynamically adjusted. However, in existing HTTP-based adaptive streaming (HAS), bitrate switching can only be performed at segment boundaries, making decisions unresponsive and often inaccurate. In this paper, we start from a close investigation on the impact of the segment length in HAS and accordingly present VHAS , an extension towards intelligent variable-length segmentation, which makes client-side decisions based on the massive amount of real-time information from the network and viewers. VHAS implements a smart trigger mechanism that balances accuracy and overhead for variable-length segmentation. We further develop an adaptive bitrate switching algorithm with data-driven I-frame prediction, which is tailored to individual viewers to minimize bitrate mismatches. We evaluate VHAS via extensive trace-driven simulations, and our results demonstrate that compared with state-of-the-art solutions, VHAS achieves 15%-49% gains in QoE, with a noticeable bandwidth reduction of 37%-57%.</description><subject>Adaptive algorithms</subject><subject>Bandwidth</subject><subject>Bit rate</subject><subject>bitrate switching</subject><subject>Decisions</subject><subject>HTTP adaptive streaming</subject><subject>I-frame prediction</subject><subject>Quality of experience</subject><subject>reinforcement learning</subject><subject>Segmentation</subject><subject>Segments</subject><subject>Servers</subject><subject>Streaming media</subject><subject>Switches</subject><subject>Switching theory</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLw0AQhRdRsFbvgpcFz6kzm2w2OdbW2kKLBSMeQ9id2C1NWjdbpf_erRUPwxt4783Ax9gtwgAR8odisRgIEGIQYyrjDM9YD_MEIwClzsMuBUS5QLhkV123BsBEguoxU9iGNgdetYYPtd67yhN_tP5XX7-t1yvbfnDb8mlRLPnQVDtvv4LlHVXN0Xq3fsXHIR6NXXBaPosmrmqILx0Zq73dttfsoq42Hd38aZ-9TZ6K0TSavzzPRsN5pEWOPkIBJozKhBIK8txQpnWqY1GrTNaJrBUCAJFRKGMBeRabmirUJE2dUoxxn92f7u7c9nNPnS_X271rw8tSZKlIE0hQhBScUtptu85RXe6cbSp3KBHKI8sysCyPLMs_lqFyd6pYIvqP50qClDL-AWJPbkY</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Feng, Tongtong</creator><creator>Qi, Qi</creator><creator>Wang, Jingyu</creator><creator>Liao, Jianxin</creator><creator>Liu, Jiangchuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4734-5607</orcidid><orcidid>https://orcid.org/0000-0003-1486-0573</orcidid><orcidid>https://orcid.org/0000-0001-6592-1984</orcidid><orcidid>https://orcid.org/0000-0003-0829-4624</orcidid><orcidid>https://orcid.org/0000-0002-2182-2228</orcidid></search><sort><creationdate>2023</creationdate><title>Timely and Accurate Bitrate Switching in HTTP Adaptive Streaming With Date-Driven I-Frame Prediction</title><author>Feng, Tongtong ; Qi, Qi ; Wang, Jingyu ; Liao, Jianxin ; Liu, Jiangchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-120d120782727099de8cc6c32f785f45f71000eed715320983dfea1ce5df6e313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive algorithms</topic><topic>Bandwidth</topic><topic>Bit rate</topic><topic>bitrate switching</topic><topic>Decisions</topic><topic>HTTP adaptive streaming</topic><topic>I-frame prediction</topic><topic>Quality of experience</topic><topic>reinforcement learning</topic><topic>Segmentation</topic><topic>Segments</topic><topic>Servers</topic><topic>Streaming media</topic><topic>Switches</topic><topic>Switching theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Tongtong</creatorcontrib><creatorcontrib>Qi, Qi</creatorcontrib><creatorcontrib>Wang, Jingyu</creatorcontrib><creatorcontrib>Liao, Jianxin</creatorcontrib><creatorcontrib>Liu, Jiangchuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Tongtong</au><au>Qi, Qi</au><au>Wang, Jingyu</au><au>Liao, Jianxin</au><au>Liu, Jiangchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Timely and Accurate Bitrate Switching in HTTP Adaptive Streaming With Date-Driven I-Frame Prediction</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2023</date><risdate>2023</risdate><volume>25</volume><spage>3753</spage><epage>3762</epage><pages>3753-3762</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>In today's Internet, bandwidth dynamics are inevitable, and hence, the bitrate for live streaming applications should also be dynamically adjusted. However, in existing HTTP-based adaptive streaming (HAS), bitrate switching can only be performed at segment boundaries, making decisions unresponsive and often inaccurate. In this paper, we start from a close investigation on the impact of the segment length in HAS and accordingly present VHAS , an extension towards intelligent variable-length segmentation, which makes client-side decisions based on the massive amount of real-time information from the network and viewers. VHAS implements a smart trigger mechanism that balances accuracy and overhead for variable-length segmentation. We further develop an adaptive bitrate switching algorithm with data-driven I-frame prediction, which is tailored to individual viewers to minimize bitrate mismatches. We evaluate VHAS via extensive trace-driven simulations, and our results demonstrate that compared with state-of-the-art solutions, VHAS achieves 15%-49% gains in QoE, with a noticeable bandwidth reduction of 37%-57%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2022.3165381</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4734-5607</orcidid><orcidid>https://orcid.org/0000-0003-1486-0573</orcidid><orcidid>https://orcid.org/0000-0001-6592-1984</orcidid><orcidid>https://orcid.org/0000-0003-0829-4624</orcidid><orcidid>https://orcid.org/0000-0002-2182-2228</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2023, Vol.25, p.3753-3762 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMM_2022_3165381 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptive algorithms Bandwidth Bit rate bitrate switching Decisions HTTP adaptive streaming I-frame prediction Quality of experience reinforcement learning Segmentation Segments Servers Streaming media Switches Switching theory |
title | Timely and Accurate Bitrate Switching in HTTP Adaptive Streaming With Date-Driven I-Frame Prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A36%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Timely%20and%20Accurate%20Bitrate%20Switching%20in%20HTTP%20Adaptive%20Streaming%20With%20Date-Driven%20I-Frame%20Prediction&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Feng,%20Tongtong&rft.date=2023&rft.volume=25&rft.spage=3753&rft.epage=3762&rft.pages=3753-3762&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2022.3165381&rft_dat=%3Cproquest_cross%3E2862640412%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-120d120782727099de8cc6c32f785f45f71000eed715320983dfea1ce5df6e313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2862640412&rft_id=info:pmid/&rft_ieee_id=9750555&rfr_iscdi=true |