Loading…

Timely and Accurate Bitrate Switching in HTTP Adaptive Streaming With Date-Driven I-Frame Prediction

In today's Internet, bandwidth dynamics are inevitable, and hence, the bitrate for live streaming applications should also be dynamically adjusted. However, in existing HTTP-based adaptive streaming (HAS), bitrate switching can only be performed at segment boundaries, making decisions unrespons...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on multimedia 2023, Vol.25, p.3753-3762
Main Authors: Feng, Tongtong, Qi, Qi, Wang, Jingyu, Liao, Jianxin, Liu, Jiangchuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-120d120782727099de8cc6c32f785f45f71000eed715320983dfea1ce5df6e313
cites cdi_FETCH-LOGICAL-c291t-120d120782727099de8cc6c32f785f45f71000eed715320983dfea1ce5df6e313
container_end_page 3762
container_issue
container_start_page 3753
container_title IEEE transactions on multimedia
container_volume 25
creator Feng, Tongtong
Qi, Qi
Wang, Jingyu
Liao, Jianxin
Liu, Jiangchuan
description In today's Internet, bandwidth dynamics are inevitable, and hence, the bitrate for live streaming applications should also be dynamically adjusted. However, in existing HTTP-based adaptive streaming (HAS), bitrate switching can only be performed at segment boundaries, making decisions unresponsive and often inaccurate. In this paper, we start from a close investigation on the impact of the segment length in HAS and accordingly present VHAS , an extension towards intelligent variable-length segmentation, which makes client-side decisions based on the massive amount of real-time information from the network and viewers. VHAS implements a smart trigger mechanism that balances accuracy and overhead for variable-length segmentation. We further develop an adaptive bitrate switching algorithm with data-driven I-frame prediction, which is tailored to individual viewers to minimize bitrate mismatches. We evaluate VHAS via extensive trace-driven simulations, and our results demonstrate that compared with state-of-the-art solutions, VHAS achieves 15%-49% gains in QoE, with a noticeable bandwidth reduction of 37%-57%.
doi_str_mv 10.1109/TMM.2022.3165381
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMM_2022_3165381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9750555</ieee_id><sourcerecordid>2862640412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-120d120782727099de8cc6c32f785f45f71000eed715320983dfea1ce5df6e313</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsFbvgpcFz6kzm2w2OdbW2kKLBSMeQ9id2C1NWjdbpf_erRUPwxt4783Ax9gtwgAR8odisRgIEGIQYyrjDM9YD_MEIwClzsMuBUS5QLhkV123BsBEguoxU9iGNgdetYYPtd67yhN_tP5XX7-t1yvbfnDb8mlRLPnQVDtvv4LlHVXN0Xq3fsXHIR6NXXBaPosmrmqILx0Zq73dttfsoq42Hd38aZ-9TZ6K0TSavzzPRsN5pEWOPkIBJozKhBIK8txQpnWqY1GrTNaJrBUCAJFRKGMBeRabmirUJE2dUoxxn92f7u7c9nNPnS_X271rw8tSZKlIE0hQhBScUtptu85RXe6cbSp3KBHKI8sysCyPLMs_lqFyd6pYIvqP50qClDL-AWJPbkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862640412</pqid></control><display><type>article</type><title>Timely and Accurate Bitrate Switching in HTTP Adaptive Streaming With Date-Driven I-Frame Prediction</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Feng, Tongtong ; Qi, Qi ; Wang, Jingyu ; Liao, Jianxin ; Liu, Jiangchuan</creator><creatorcontrib>Feng, Tongtong ; Qi, Qi ; Wang, Jingyu ; Liao, Jianxin ; Liu, Jiangchuan</creatorcontrib><description>In today's Internet, bandwidth dynamics are inevitable, and hence, the bitrate for live streaming applications should also be dynamically adjusted. However, in existing HTTP-based adaptive streaming (HAS), bitrate switching can only be performed at segment boundaries, making decisions unresponsive and often inaccurate. In this paper, we start from a close investigation on the impact of the segment length in HAS and accordingly present VHAS , an extension towards intelligent variable-length segmentation, which makes client-side decisions based on the massive amount of real-time information from the network and viewers. VHAS implements a smart trigger mechanism that balances accuracy and overhead for variable-length segmentation. We further develop an adaptive bitrate switching algorithm with data-driven I-frame prediction, which is tailored to individual viewers to minimize bitrate mismatches. We evaluate VHAS via extensive trace-driven simulations, and our results demonstrate that compared with state-of-the-art solutions, VHAS achieves 15%-49% gains in QoE, with a noticeable bandwidth reduction of 37%-57%.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2022.3165381</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive algorithms ; Bandwidth ; Bit rate ; bitrate switching ; Decisions ; HTTP adaptive streaming ; I-frame prediction ; Quality of experience ; reinforcement learning ; Segmentation ; Segments ; Servers ; Streaming media ; Switches ; Switching theory</subject><ispartof>IEEE transactions on multimedia, 2023, Vol.25, p.3753-3762</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-120d120782727099de8cc6c32f785f45f71000eed715320983dfea1ce5df6e313</citedby><cites>FETCH-LOGICAL-c291t-120d120782727099de8cc6c32f785f45f71000eed715320983dfea1ce5df6e313</cites><orcidid>0000-0003-4734-5607 ; 0000-0003-1486-0573 ; 0000-0001-6592-1984 ; 0000-0003-0829-4624 ; 0000-0002-2182-2228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9750555$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4021,27921,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Feng, Tongtong</creatorcontrib><creatorcontrib>Qi, Qi</creatorcontrib><creatorcontrib>Wang, Jingyu</creatorcontrib><creatorcontrib>Liao, Jianxin</creatorcontrib><creatorcontrib>Liu, Jiangchuan</creatorcontrib><title>Timely and Accurate Bitrate Switching in HTTP Adaptive Streaming With Date-Driven I-Frame Prediction</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>In today's Internet, bandwidth dynamics are inevitable, and hence, the bitrate for live streaming applications should also be dynamically adjusted. However, in existing HTTP-based adaptive streaming (HAS), bitrate switching can only be performed at segment boundaries, making decisions unresponsive and often inaccurate. In this paper, we start from a close investigation on the impact of the segment length in HAS and accordingly present VHAS , an extension towards intelligent variable-length segmentation, which makes client-side decisions based on the massive amount of real-time information from the network and viewers. VHAS implements a smart trigger mechanism that balances accuracy and overhead for variable-length segmentation. We further develop an adaptive bitrate switching algorithm with data-driven I-frame prediction, which is tailored to individual viewers to minimize bitrate mismatches. We evaluate VHAS via extensive trace-driven simulations, and our results demonstrate that compared with state-of-the-art solutions, VHAS achieves 15%-49% gains in QoE, with a noticeable bandwidth reduction of 37%-57%.</description><subject>Adaptive algorithms</subject><subject>Bandwidth</subject><subject>Bit rate</subject><subject>bitrate switching</subject><subject>Decisions</subject><subject>HTTP adaptive streaming</subject><subject>I-frame prediction</subject><subject>Quality of experience</subject><subject>reinforcement learning</subject><subject>Segmentation</subject><subject>Segments</subject><subject>Servers</subject><subject>Streaming media</subject><subject>Switches</subject><subject>Switching theory</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLw0AQhRdRsFbvgpcFz6kzm2w2OdbW2kKLBSMeQ9id2C1NWjdbpf_erRUPwxt4783Ax9gtwgAR8odisRgIEGIQYyrjDM9YD_MEIwClzsMuBUS5QLhkV123BsBEguoxU9iGNgdetYYPtd67yhN_tP5XX7-t1yvbfnDb8mlRLPnQVDtvv4LlHVXN0Xq3fsXHIR6NXXBaPosmrmqILx0Zq73dttfsoq42Hd38aZ-9TZ6K0TSavzzPRsN5pEWOPkIBJozKhBIK8txQpnWqY1GrTNaJrBUCAJFRKGMBeRabmirUJE2dUoxxn92f7u7c9nNPnS_X271rw8tSZKlIE0hQhBScUtptu85RXe6cbSp3KBHKI8sysCyPLMs_lqFyd6pYIvqP50qClDL-AWJPbkY</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Feng, Tongtong</creator><creator>Qi, Qi</creator><creator>Wang, Jingyu</creator><creator>Liao, Jianxin</creator><creator>Liu, Jiangchuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4734-5607</orcidid><orcidid>https://orcid.org/0000-0003-1486-0573</orcidid><orcidid>https://orcid.org/0000-0001-6592-1984</orcidid><orcidid>https://orcid.org/0000-0003-0829-4624</orcidid><orcidid>https://orcid.org/0000-0002-2182-2228</orcidid></search><sort><creationdate>2023</creationdate><title>Timely and Accurate Bitrate Switching in HTTP Adaptive Streaming With Date-Driven I-Frame Prediction</title><author>Feng, Tongtong ; Qi, Qi ; Wang, Jingyu ; Liao, Jianxin ; Liu, Jiangchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-120d120782727099de8cc6c32f785f45f71000eed715320983dfea1ce5df6e313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive algorithms</topic><topic>Bandwidth</topic><topic>Bit rate</topic><topic>bitrate switching</topic><topic>Decisions</topic><topic>HTTP adaptive streaming</topic><topic>I-frame prediction</topic><topic>Quality of experience</topic><topic>reinforcement learning</topic><topic>Segmentation</topic><topic>Segments</topic><topic>Servers</topic><topic>Streaming media</topic><topic>Switches</topic><topic>Switching theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Tongtong</creatorcontrib><creatorcontrib>Qi, Qi</creatorcontrib><creatorcontrib>Wang, Jingyu</creatorcontrib><creatorcontrib>Liao, Jianxin</creatorcontrib><creatorcontrib>Liu, Jiangchuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Tongtong</au><au>Qi, Qi</au><au>Wang, Jingyu</au><au>Liao, Jianxin</au><au>Liu, Jiangchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Timely and Accurate Bitrate Switching in HTTP Adaptive Streaming With Date-Driven I-Frame Prediction</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2023</date><risdate>2023</risdate><volume>25</volume><spage>3753</spage><epage>3762</epage><pages>3753-3762</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>In today's Internet, bandwidth dynamics are inevitable, and hence, the bitrate for live streaming applications should also be dynamically adjusted. However, in existing HTTP-based adaptive streaming (HAS), bitrate switching can only be performed at segment boundaries, making decisions unresponsive and often inaccurate. In this paper, we start from a close investigation on the impact of the segment length in HAS and accordingly present VHAS , an extension towards intelligent variable-length segmentation, which makes client-side decisions based on the massive amount of real-time information from the network and viewers. VHAS implements a smart trigger mechanism that balances accuracy and overhead for variable-length segmentation. We further develop an adaptive bitrate switching algorithm with data-driven I-frame prediction, which is tailored to individual viewers to minimize bitrate mismatches. We evaluate VHAS via extensive trace-driven simulations, and our results demonstrate that compared with state-of-the-art solutions, VHAS achieves 15%-49% gains in QoE, with a noticeable bandwidth reduction of 37%-57%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2022.3165381</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4734-5607</orcidid><orcidid>https://orcid.org/0000-0003-1486-0573</orcidid><orcidid>https://orcid.org/0000-0001-6592-1984</orcidid><orcidid>https://orcid.org/0000-0003-0829-4624</orcidid><orcidid>https://orcid.org/0000-0002-2182-2228</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2023, Vol.25, p.3753-3762
issn 1520-9210
1941-0077
language eng
recordid cdi_crossref_primary_10_1109_TMM_2022_3165381
source IEEE Electronic Library (IEL) Journals
subjects Adaptive algorithms
Bandwidth
Bit rate
bitrate switching
Decisions
HTTP adaptive streaming
I-frame prediction
Quality of experience
reinforcement learning
Segmentation
Segments
Servers
Streaming media
Switches
Switching theory
title Timely and Accurate Bitrate Switching in HTTP Adaptive Streaming With Date-Driven I-Frame Prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A36%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Timely%20and%20Accurate%20Bitrate%20Switching%20in%20HTTP%20Adaptive%20Streaming%20With%20Date-Driven%20I-Frame%20Prediction&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Feng,%20Tongtong&rft.date=2023&rft.volume=25&rft.spage=3753&rft.epage=3762&rft.pages=3753-3762&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2022.3165381&rft_dat=%3Cproquest_cross%3E2862640412%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-120d120782727099de8cc6c32f785f45f71000eed715320983dfea1ce5df6e313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2862640412&rft_id=info:pmid/&rft_ieee_id=9750555&rfr_iscdi=true