Loading…
Impedance and polarization-ratio transformations by a graphical method using the isometric circles
The isometric circles for the direct and inverse linear fractional transformations can be used for transformations of impedances and polarization ratios. In the Ioxodromic case an inversion is performed in the isometric circle of the direct transformation, followed by a reflection in the symmetry li...
Saved in:
Published in: | I.R.E. transactions on microwave theory and techniques 1956-07, Vol.4 (3), p.176-180 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c180t-b9c80151ec46a5a1ac63a82f6ca21ef2446e67c2cc9ec8cff0305af5b08986123 |
---|---|
cites | cdi_FETCH-LOGICAL-c180t-b9c80151ec46a5a1ac63a82f6ca21ef2446e67c2cc9ec8cff0305af5b08986123 |
container_end_page | 180 |
container_issue | 3 |
container_start_page | 176 |
container_title | I.R.E. transactions on microwave theory and techniques |
container_volume | 4 |
creator | Bolinder, E.F. |
description | The isometric circles for the direct and inverse linear fractional transformations can be used for transformations of impedances and polarization ratios. In the Ioxodromic case an inversion is performed in the isometric circle of the direct transformation, followed by a reflection in the symmetry line of the two circles, and a rotation around the origin of the isometric circle of the inverse transformation. In the nonloxodromic case only the first two operations have to be applied. Three illustrative examples are given: the first shows the transformation of the right half of the complex impedance plane into the unit circle (Smith Chart); the second gives a circular proof of the Weissfloch transformer theorem; the third shows an example of cascading, Iossless, two terminal-pair networks. |
doi_str_mv | 10.1109/TMTT.1956.1125047 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMTT_1956_1125047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1125047</ieee_id><sourcerecordid>10_1109_TMTT_1956_1125047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-b9c80151ec46a5a1ac63a82f6ca21ef2446e67c2cc9ec8cff0305af5b08986123</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhC0EEqXwAIiLXyCwdhLHPqKKn0pFXILELdps7dYof7LDoTw9Ca3EabSzOyvNx9itgHshwDyUb2V5L0yuplHmkBVnbCHTVCSg9ec5WwCYIpEA8pJdxfgFkEJhzILV63awW-zIcuy2fOgbDP4HR993SZiFjwG76PrQ_pmR1weOfBdw2HvChrd23Pdb_h19t-Pj3nIf-8kLnjj5QI2N1-zCYRPtzUmX7OP5qVy9Jpv3l_XqcZOQ0DAmtSENIheWMoU5CiSVopZOEUphncwyZVVBkshY0uTcVCFHl9egjVZCpksmjn8p9DEG66oh-BbDoRJQzZCqGVI1Q6pOkKbM3THjrbX_96ftL4_NZfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Impedance and polarization-ratio transformations by a graphical method using the isometric circles</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Bolinder, E.F.</creator><creatorcontrib>Bolinder, E.F.</creatorcontrib><description>The isometric circles for the direct and inverse linear fractional transformations can be used for transformations of impedances and polarization ratios. In the Ioxodromic case an inversion is performed in the isometric circle of the direct transformation, followed by a reflection in the symmetry line of the two circles, and a rotation around the origin of the isometric circle of the inverse transformation. In the nonloxodromic case only the first two operations have to be applied. Three illustrative examples are given: the first shows the transformation of the right half of the complex impedance plane into the unit circle (Smith Chart); the second gives a circular proof of the Weissfloch transformer theorem; the third shows an example of cascading, Iossless, two terminal-pair networks.</description><identifier>ISSN: 0097-2002</identifier><identifier>EISSN: 2331-088X</identifier><identifier>DOI: 10.1109/TMTT.1956.1125047</identifier><language>eng</language><subject>Admittance ; Equations ; Impedance ; Polarization ; Reflection ; Research and development ; Voltage</subject><ispartof>I.R.E. transactions on microwave theory and techniques, 1956-07, Vol.4 (3), p.176-180</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c180t-b9c80151ec46a5a1ac63a82f6ca21ef2446e67c2cc9ec8cff0305af5b08986123</citedby><cites>FETCH-LOGICAL-c180t-b9c80151ec46a5a1ac63a82f6ca21ef2446e67c2cc9ec8cff0305af5b08986123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1125047$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Bolinder, E.F.</creatorcontrib><title>Impedance and polarization-ratio transformations by a graphical method using the isometric circles</title><title>I.R.E. transactions on microwave theory and techniques</title><addtitle>IRET-MTT</addtitle><description>The isometric circles for the direct and inverse linear fractional transformations can be used for transformations of impedances and polarization ratios. In the Ioxodromic case an inversion is performed in the isometric circle of the direct transformation, followed by a reflection in the symmetry line of the two circles, and a rotation around the origin of the isometric circle of the inverse transformation. In the nonloxodromic case only the first two operations have to be applied. Three illustrative examples are given: the first shows the transformation of the right half of the complex impedance plane into the unit circle (Smith Chart); the second gives a circular proof of the Weissfloch transformer theorem; the third shows an example of cascading, Iossless, two terminal-pair networks.</description><subject>Admittance</subject><subject>Equations</subject><subject>Impedance</subject><subject>Polarization</subject><subject>Reflection</subject><subject>Research and development</subject><subject>Voltage</subject><issn>0097-2002</issn><issn>2331-088X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1956</creationdate><recordtype>article</recordtype><recordid>eNpFkM1OwzAQhC0EEqXwAIiLXyCwdhLHPqKKn0pFXILELdps7dYof7LDoTw9Ca3EabSzOyvNx9itgHshwDyUb2V5L0yuplHmkBVnbCHTVCSg9ec5WwCYIpEA8pJdxfgFkEJhzILV63awW-zIcuy2fOgbDP4HR993SZiFjwG76PrQ_pmR1weOfBdw2HvChrd23Pdb_h19t-Pj3nIf-8kLnjj5QI2N1-zCYRPtzUmX7OP5qVy9Jpv3l_XqcZOQ0DAmtSENIheWMoU5CiSVopZOEUphncwyZVVBkshY0uTcVCFHl9egjVZCpksmjn8p9DEG66oh-BbDoRJQzZCqGVI1Q6pOkKbM3THjrbX_96ftL4_NZfg</recordid><startdate>195607</startdate><enddate>195607</enddate><creator>Bolinder, E.F.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>195607</creationdate><title>Impedance and polarization-ratio transformations by a graphical method using the isometric circles</title><author>Bolinder, E.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-b9c80151ec46a5a1ac63a82f6ca21ef2446e67c2cc9ec8cff0305af5b08986123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1956</creationdate><topic>Admittance</topic><topic>Equations</topic><topic>Impedance</topic><topic>Polarization</topic><topic>Reflection</topic><topic>Research and development</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Bolinder, E.F.</creatorcontrib><collection>CrossRef</collection><jtitle>I.R.E. transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bolinder, E.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impedance and polarization-ratio transformations by a graphical method using the isometric circles</atitle><jtitle>I.R.E. transactions on microwave theory and techniques</jtitle><stitle>IRET-MTT</stitle><date>1956-07</date><risdate>1956</risdate><volume>4</volume><issue>3</issue><spage>176</spage><epage>180</epage><pages>176-180</pages><issn>0097-2002</issn><eissn>2331-088X</eissn><abstract>The isometric circles for the direct and inverse linear fractional transformations can be used for transformations of impedances and polarization ratios. In the Ioxodromic case an inversion is performed in the isometric circle of the direct transformation, followed by a reflection in the symmetry line of the two circles, and a rotation around the origin of the isometric circle of the inverse transformation. In the nonloxodromic case only the first two operations have to be applied. Three illustrative examples are given: the first shows the transformation of the right half of the complex impedance plane into the unit circle (Smith Chart); the second gives a circular proof of the Weissfloch transformer theorem; the third shows an example of cascading, Iossless, two terminal-pair networks.</abstract><doi>10.1109/TMTT.1956.1125047</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0097-2002 |
ispartof | I.R.E. transactions on microwave theory and techniques, 1956-07, Vol.4 (3), p.176-180 |
issn | 0097-2002 2331-088X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMTT_1956_1125047 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Admittance Equations Impedance Polarization Reflection Research and development Voltage |
title | Impedance and polarization-ratio transformations by a graphical method using the isometric circles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A23%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impedance%20and%20polarization-ratio%20transformations%20by%20a%20graphical%20method%20using%20the%20isometric%20circles&rft.jtitle=I.R.E.%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Bolinder,%20E.F.&rft.date=1956-07&rft.volume=4&rft.issue=3&rft.spage=176&rft.epage=180&rft.pages=176-180&rft.issn=0097-2002&rft.eissn=2331-088X&rft_id=info:doi/10.1109/TMTT.1956.1125047&rft_dat=%3Ccrossref_ieee_%3E10_1109_TMTT_1956_1125047%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c180t-b9c80151ec46a5a1ac63a82f6ca21ef2446e67c2cc9ec8cff0305af5b08986123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1125047&rfr_iscdi=true |