Loading…

Impedance and polarization-ratio transformations by a graphical method using the isometric circles

The isometric circles for the direct and inverse linear fractional transformations can be used for transformations of impedances and polarization ratios. In the Ioxodromic case an inversion is performed in the isometric circle of the direct transformation, followed by a reflection in the symmetry li...

Full description

Saved in:
Bibliographic Details
Published in:I.R.E. transactions on microwave theory and techniques 1956-07, Vol.4 (3), p.176-180
Main Author: Bolinder, E.F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c180t-b9c80151ec46a5a1ac63a82f6ca21ef2446e67c2cc9ec8cff0305af5b08986123
cites cdi_FETCH-LOGICAL-c180t-b9c80151ec46a5a1ac63a82f6ca21ef2446e67c2cc9ec8cff0305af5b08986123
container_end_page 180
container_issue 3
container_start_page 176
container_title I.R.E. transactions on microwave theory and techniques
container_volume 4
creator Bolinder, E.F.
description The isometric circles for the direct and inverse linear fractional transformations can be used for transformations of impedances and polarization ratios. In the Ioxodromic case an inversion is performed in the isometric circle of the direct transformation, followed by a reflection in the symmetry line of the two circles, and a rotation around the origin of the isometric circle of the inverse transformation. In the nonloxodromic case only the first two operations have to be applied. Three illustrative examples are given: the first shows the transformation of the right half of the complex impedance plane into the unit circle (Smith Chart); the second gives a circular proof of the Weissfloch transformer theorem; the third shows an example of cascading, Iossless, two terminal-pair networks.
doi_str_mv 10.1109/TMTT.1956.1125047
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMTT_1956_1125047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1125047</ieee_id><sourcerecordid>10_1109_TMTT_1956_1125047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-b9c80151ec46a5a1ac63a82f6ca21ef2446e67c2cc9ec8cff0305af5b08986123</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhC0EEqXwAIiLXyCwdhLHPqKKn0pFXILELdps7dYof7LDoTw9Ca3EabSzOyvNx9itgHshwDyUb2V5L0yuplHmkBVnbCHTVCSg9ec5WwCYIpEA8pJdxfgFkEJhzILV63awW-zIcuy2fOgbDP4HR993SZiFjwG76PrQ_pmR1weOfBdw2HvChrd23Pdb_h19t-Pj3nIf-8kLnjj5QI2N1-zCYRPtzUmX7OP5qVy9Jpv3l_XqcZOQ0DAmtSENIheWMoU5CiSVopZOEUphncwyZVVBkshY0uTcVCFHl9egjVZCpksmjn8p9DEG66oh-BbDoRJQzZCqGVI1Q6pOkKbM3THjrbX_96ftL4_NZfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Impedance and polarization-ratio transformations by a graphical method using the isometric circles</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Bolinder, E.F.</creator><creatorcontrib>Bolinder, E.F.</creatorcontrib><description>The isometric circles for the direct and inverse linear fractional transformations can be used for transformations of impedances and polarization ratios. In the Ioxodromic case an inversion is performed in the isometric circle of the direct transformation, followed by a reflection in the symmetry line of the two circles, and a rotation around the origin of the isometric circle of the inverse transformation. In the nonloxodromic case only the first two operations have to be applied. Three illustrative examples are given: the first shows the transformation of the right half of the complex impedance plane into the unit circle (Smith Chart); the second gives a circular proof of the Weissfloch transformer theorem; the third shows an example of cascading, Iossless, two terminal-pair networks.</description><identifier>ISSN: 0097-2002</identifier><identifier>EISSN: 2331-088X</identifier><identifier>DOI: 10.1109/TMTT.1956.1125047</identifier><language>eng</language><subject>Admittance ; Equations ; Impedance ; Polarization ; Reflection ; Research and development ; Voltage</subject><ispartof>I.R.E. transactions on microwave theory and techniques, 1956-07, Vol.4 (3), p.176-180</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c180t-b9c80151ec46a5a1ac63a82f6ca21ef2446e67c2cc9ec8cff0305af5b08986123</citedby><cites>FETCH-LOGICAL-c180t-b9c80151ec46a5a1ac63a82f6ca21ef2446e67c2cc9ec8cff0305af5b08986123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1125047$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Bolinder, E.F.</creatorcontrib><title>Impedance and polarization-ratio transformations by a graphical method using the isometric circles</title><title>I.R.E. transactions on microwave theory and techniques</title><addtitle>IRET-MTT</addtitle><description>The isometric circles for the direct and inverse linear fractional transformations can be used for transformations of impedances and polarization ratios. In the Ioxodromic case an inversion is performed in the isometric circle of the direct transformation, followed by a reflection in the symmetry line of the two circles, and a rotation around the origin of the isometric circle of the inverse transformation. In the nonloxodromic case only the first two operations have to be applied. Three illustrative examples are given: the first shows the transformation of the right half of the complex impedance plane into the unit circle (Smith Chart); the second gives a circular proof of the Weissfloch transformer theorem; the third shows an example of cascading, Iossless, two terminal-pair networks.</description><subject>Admittance</subject><subject>Equations</subject><subject>Impedance</subject><subject>Polarization</subject><subject>Reflection</subject><subject>Research and development</subject><subject>Voltage</subject><issn>0097-2002</issn><issn>2331-088X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1956</creationdate><recordtype>article</recordtype><recordid>eNpFkM1OwzAQhC0EEqXwAIiLXyCwdhLHPqKKn0pFXILELdps7dYof7LDoTw9Ca3EabSzOyvNx9itgHshwDyUb2V5L0yuplHmkBVnbCHTVCSg9ec5WwCYIpEA8pJdxfgFkEJhzILV63awW-zIcuy2fOgbDP4HR993SZiFjwG76PrQ_pmR1weOfBdw2HvChrd23Pdb_h19t-Pj3nIf-8kLnjj5QI2N1-zCYRPtzUmX7OP5qVy9Jpv3l_XqcZOQ0DAmtSENIheWMoU5CiSVopZOEUphncwyZVVBkshY0uTcVCFHl9egjVZCpksmjn8p9DEG66oh-BbDoRJQzZCqGVI1Q6pOkKbM3THjrbX_96ftL4_NZfg</recordid><startdate>195607</startdate><enddate>195607</enddate><creator>Bolinder, E.F.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>195607</creationdate><title>Impedance and polarization-ratio transformations by a graphical method using the isometric circles</title><author>Bolinder, E.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-b9c80151ec46a5a1ac63a82f6ca21ef2446e67c2cc9ec8cff0305af5b08986123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1956</creationdate><topic>Admittance</topic><topic>Equations</topic><topic>Impedance</topic><topic>Polarization</topic><topic>Reflection</topic><topic>Research and development</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Bolinder, E.F.</creatorcontrib><collection>CrossRef</collection><jtitle>I.R.E. transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bolinder, E.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impedance and polarization-ratio transformations by a graphical method using the isometric circles</atitle><jtitle>I.R.E. transactions on microwave theory and techniques</jtitle><stitle>IRET-MTT</stitle><date>1956-07</date><risdate>1956</risdate><volume>4</volume><issue>3</issue><spage>176</spage><epage>180</epage><pages>176-180</pages><issn>0097-2002</issn><eissn>2331-088X</eissn><abstract>The isometric circles for the direct and inverse linear fractional transformations can be used for transformations of impedances and polarization ratios. In the Ioxodromic case an inversion is performed in the isometric circle of the direct transformation, followed by a reflection in the symmetry line of the two circles, and a rotation around the origin of the isometric circle of the inverse transformation. In the nonloxodromic case only the first two operations have to be applied. Three illustrative examples are given: the first shows the transformation of the right half of the complex impedance plane into the unit circle (Smith Chart); the second gives a circular proof of the Weissfloch transformer theorem; the third shows an example of cascading, Iossless, two terminal-pair networks.</abstract><doi>10.1109/TMTT.1956.1125047</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-2002
ispartof I.R.E. transactions on microwave theory and techniques, 1956-07, Vol.4 (3), p.176-180
issn 0097-2002
2331-088X
language eng
recordid cdi_crossref_primary_10_1109_TMTT_1956_1125047
source IEEE Electronic Library (IEL) Journals
subjects Admittance
Equations
Impedance
Polarization
Reflection
Research and development
Voltage
title Impedance and polarization-ratio transformations by a graphical method using the isometric circles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A23%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impedance%20and%20polarization-ratio%20transformations%20by%20a%20graphical%20method%20using%20the%20isometric%20circles&rft.jtitle=I.R.E.%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Bolinder,%20E.F.&rft.date=1956-07&rft.volume=4&rft.issue=3&rft.spage=176&rft.epage=180&rft.pages=176-180&rft.issn=0097-2002&rft.eissn=2331-088X&rft_id=info:doi/10.1109/TMTT.1956.1125047&rft_dat=%3Ccrossref_ieee_%3E10_1109_TMTT_1956_1125047%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c180t-b9c80151ec46a5a1ac63a82f6ca21ef2446e67c2cc9ec8cff0305af5b08986123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1125047&rfr_iscdi=true