Loading…

Compact RF Model for Transient Characteristics of MEMS Capacitive Switches

A compact model is proposed to facilitate the design and simulation of the control waveform of RF microelectromechanical systems (MEMS) capacitive switches with electrostatically actuated membranes. Following conventional approaches, the pull-in motion of a membrane is simulated by an L-R-C network....

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on microwave theory and techniques 2009-01, Vol.57 (1), p.237-242
Main Authors: Halder, S., Palego, C., Zhen Peng, Hwang, J.C.M., Forehand, D.I., Goldsmith, C.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-e22f1d4f332a14d09a156c0560c306e81d9f1cb69c936a673520fbde96c3a56b3
cites cdi_FETCH-LOGICAL-c385t-e22f1d4f332a14d09a156c0560c306e81d9f1cb69c936a673520fbde96c3a56b3
container_end_page 242
container_issue 1
container_start_page 237
container_title IEEE transactions on microwave theory and techniques
container_volume 57
creator Halder, S.
Palego, C.
Zhen Peng
Hwang, J.C.M.
Forehand, D.I.
Goldsmith, C.L.
description A compact model is proposed to facilitate the design and simulation of the control waveform of RF microelectromechanical systems (MEMS) capacitive switches with electrostatically actuated membranes. Following conventional approaches, the pull-in motion of a membrane is simulated by an L-R-C network. However, the present model deviates from conventional approaches by adding another capacitor and a diode to simulate the gradual contact of the membrane with the stationary electrode. After contact, variable mass, spring constant, and damping factor are used to simulate the release process of the membrane. By smoothly bridging the model between pull-in, contact, and release processes, the model can efficiently simulate static and transient S-parameters of the switches up to 50 GHz. The model can be readily installed in popular computer-aided circuit design environments to analyze in the time domain the behavior of the switches and the operation of MEMS-based circuits.
doi_str_mv 10.1109/TMTT.2008.2009039
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMTT_2008_2009039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4711153</ieee_id><sourcerecordid>34476892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-e22f1d4f332a14d09a156c0560c306e81d9f1cb69c936a673520fbde96c3a56b3</originalsourceid><addsrcrecordid>eNp9kU1rHDEMhk1JoZu0P6D0YgJJT5NK_hr7GIakH2QpNNOz8Xps4jC7s7FnG_rv42WXHHqoDhJCzyuQXkI-IlwhgvnSL_v-igHofTLAzRuyQCnbxqgWTsgCAHVjhIZ35LSUx9oKCXpBfnTTeuv8TH_d0uU0hJHGKdM-u01JYTPT7sHlOg45lTn5QqdIlzfLe9q5qkpz-hPo_XOa_UMo78nb6MYSPhzrGfl9e9N335q7n1-_d9d3jedazk1gLOIgIufMoRjAOJTKg1TgOaigcTAR_UoZb7hyquWSQVwNwSjPnVQrfkY-H_Zu8_S0C2W261R8GEe3CdOuWK2MFtIIrOTlf0kuRKu0YRU8_wd8nHZ5U6-wWirDavAK4QHyeSolh2i3Oa1d_msR7N4EuzfB7k2wRxOq5uK42BXvxlj_6lN5FTIEhpzLyn06cCmE8DoWLSJKzl8AwHSNqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856922223</pqid></control><display><type>article</type><title>Compact RF Model for Transient Characteristics of MEMS Capacitive Switches</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Halder, S. ; Palego, C. ; Zhen Peng ; Hwang, J.C.M. ; Forehand, D.I. ; Goldsmith, C.L.</creator><creatorcontrib>Halder, S. ; Palego, C. ; Zhen Peng ; Hwang, J.C.M. ; Forehand, D.I. ; Goldsmith, C.L.</creatorcontrib><description>A compact model is proposed to facilitate the design and simulation of the control waveform of RF microelectromechanical systems (MEMS) capacitive switches with electrostatically actuated membranes. Following conventional approaches, the pull-in motion of a membrane is simulated by an L-R-C network. However, the present model deviates from conventional approaches by adding another capacitor and a diode to simulate the gradual contact of the membrane with the stationary electrode. After contact, variable mass, spring constant, and damping factor are used to simulate the release process of the membrane. By smoothly bridging the model between pull-in, contact, and release processes, the model can efficiently simulate static and transient S-parameters of the switches up to 50 GHz. The model can be readily installed in popular computer-aided circuit design environments to analyze in the time domain the behavior of the switches and the operation of MEMS-based circuits.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2008.2009039</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Biomembranes ; Capacitance measurement ; Capacitors ; Circuit design ; Circuit properties ; Circuit simulation ; Computational modeling ; Computer simulation ; Contact ; Dielectric, amorphous and glass solid devices ; Diodes ; Electric, optical and optoelectronic circuits ; Electrodes ; electromechanical effects ; Electronics ; Exact sciences and technology ; Membranes ; Micro- and nanoelectromechanical devices (mems/nems) ; microelectromechanical devices ; Microelectromechanical systems ; Micromechanical devices ; Microwave and submillimeter wave devices, electron transfer devices ; Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits ; microwave devices ; microwave measurements ; microwave switches ; Radio frequencies ; Radio frequency ; Radiofrequency microelectromechanical systems ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Switches</subject><ispartof>IEEE transactions on microwave theory and techniques, 2009-01, Vol.57 (1), p.237-242</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-e22f1d4f332a14d09a156c0560c306e81d9f1cb69c936a673520fbde96c3a56b3</citedby><cites>FETCH-LOGICAL-c385t-e22f1d4f332a14d09a156c0560c306e81d9f1cb69c936a673520fbde96c3a56b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4711153$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21021335$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Halder, S.</creatorcontrib><creatorcontrib>Palego, C.</creatorcontrib><creatorcontrib>Zhen Peng</creatorcontrib><creatorcontrib>Hwang, J.C.M.</creatorcontrib><creatorcontrib>Forehand, D.I.</creatorcontrib><creatorcontrib>Goldsmith, C.L.</creatorcontrib><title>Compact RF Model for Transient Characteristics of MEMS Capacitive Switches</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>A compact model is proposed to facilitate the design and simulation of the control waveform of RF microelectromechanical systems (MEMS) capacitive switches with electrostatically actuated membranes. Following conventional approaches, the pull-in motion of a membrane is simulated by an L-R-C network. However, the present model deviates from conventional approaches by adding another capacitor and a diode to simulate the gradual contact of the membrane with the stationary electrode. After contact, variable mass, spring constant, and damping factor are used to simulate the release process of the membrane. By smoothly bridging the model between pull-in, contact, and release processes, the model can efficiently simulate static and transient S-parameters of the switches up to 50 GHz. The model can be readily installed in popular computer-aided circuit design environments to analyze in the time domain the behavior of the switches and the operation of MEMS-based circuits.</description><subject>Applied sciences</subject><subject>Biomembranes</subject><subject>Capacitance measurement</subject><subject>Capacitors</subject><subject>Circuit design</subject><subject>Circuit properties</subject><subject>Circuit simulation</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Contact</subject><subject>Dielectric, amorphous and glass solid devices</subject><subject>Diodes</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electrodes</subject><subject>electromechanical effects</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Membranes</subject><subject>Micro- and nanoelectromechanical devices (mems/nems)</subject><subject>microelectromechanical devices</subject><subject>Microelectromechanical systems</subject><subject>Micromechanical devices</subject><subject>Microwave and submillimeter wave devices, electron transfer devices</subject><subject>Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits</subject><subject>microwave devices</subject><subject>microwave measurements</subject><subject>microwave switches</subject><subject>Radio frequencies</subject><subject>Radio frequency</subject><subject>Radiofrequency microelectromechanical systems</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Switches</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rHDEMhk1JoZu0P6D0YgJJT5NK_hr7GIakH2QpNNOz8Xps4jC7s7FnG_rv42WXHHqoDhJCzyuQXkI-IlwhgvnSL_v-igHofTLAzRuyQCnbxqgWTsgCAHVjhIZ35LSUx9oKCXpBfnTTeuv8TH_d0uU0hJHGKdM-u01JYTPT7sHlOg45lTn5QqdIlzfLe9q5qkpz-hPo_XOa_UMo78nb6MYSPhzrGfl9e9N335q7n1-_d9d3jedazk1gLOIgIufMoRjAOJTKg1TgOaigcTAR_UoZb7hyquWSQVwNwSjPnVQrfkY-H_Zu8_S0C2W261R8GEe3CdOuWK2MFtIIrOTlf0kuRKu0YRU8_wd8nHZ5U6-wWirDavAK4QHyeSolh2i3Oa1d_msR7N4EuzfB7k2wRxOq5uK42BXvxlj_6lN5FTIEhpzLyn06cCmE8DoWLSJKzl8AwHSNqg</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Halder, S.</creator><creator>Palego, C.</creator><creator>Zhen Peng</creator><creator>Hwang, J.C.M.</creator><creator>Forehand, D.I.</creator><creator>Goldsmith, C.L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200901</creationdate><title>Compact RF Model for Transient Characteristics of MEMS Capacitive Switches</title><author>Halder, S. ; Palego, C. ; Zhen Peng ; Hwang, J.C.M. ; Forehand, D.I. ; Goldsmith, C.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-e22f1d4f332a14d09a156c0560c306e81d9f1cb69c936a673520fbde96c3a56b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Biomembranes</topic><topic>Capacitance measurement</topic><topic>Capacitors</topic><topic>Circuit design</topic><topic>Circuit properties</topic><topic>Circuit simulation</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Contact</topic><topic>Dielectric, amorphous and glass solid devices</topic><topic>Diodes</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electrodes</topic><topic>electromechanical effects</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Membranes</topic><topic>Micro- and nanoelectromechanical devices (mems/nems)</topic><topic>microelectromechanical devices</topic><topic>Microelectromechanical systems</topic><topic>Micromechanical devices</topic><topic>Microwave and submillimeter wave devices, electron transfer devices</topic><topic>Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits</topic><topic>microwave devices</topic><topic>microwave measurements</topic><topic>microwave switches</topic><topic>Radio frequencies</topic><topic>Radio frequency</topic><topic>Radiofrequency microelectromechanical systems</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halder, S.</creatorcontrib><creatorcontrib>Palego, C.</creatorcontrib><creatorcontrib>Zhen Peng</creatorcontrib><creatorcontrib>Hwang, J.C.M.</creatorcontrib><creatorcontrib>Forehand, D.I.</creatorcontrib><creatorcontrib>Goldsmith, C.L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halder, S.</au><au>Palego, C.</au><au>Zhen Peng</au><au>Hwang, J.C.M.</au><au>Forehand, D.I.</au><au>Goldsmith, C.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact RF Model for Transient Characteristics of MEMS Capacitive Switches</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2009-01</date><risdate>2009</risdate><volume>57</volume><issue>1</issue><spage>237</spage><epage>242</epage><pages>237-242</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>A compact model is proposed to facilitate the design and simulation of the control waveform of RF microelectromechanical systems (MEMS) capacitive switches with electrostatically actuated membranes. Following conventional approaches, the pull-in motion of a membrane is simulated by an L-R-C network. However, the present model deviates from conventional approaches by adding another capacitor and a diode to simulate the gradual contact of the membrane with the stationary electrode. After contact, variable mass, spring constant, and damping factor are used to simulate the release process of the membrane. By smoothly bridging the model between pull-in, contact, and release processes, the model can efficiently simulate static and transient S-parameters of the switches up to 50 GHz. The model can be readily installed in popular computer-aided circuit design environments to analyze in the time domain the behavior of the switches and the operation of MEMS-based circuits.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMTT.2008.2009039</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2009-01, Vol.57 (1), p.237-242
issn 0018-9480
1557-9670
language eng
recordid cdi_crossref_primary_10_1109_TMTT_2008_2009039
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Biomembranes
Capacitance measurement
Capacitors
Circuit design
Circuit properties
Circuit simulation
Computational modeling
Computer simulation
Contact
Dielectric, amorphous and glass solid devices
Diodes
Electric, optical and optoelectronic circuits
Electrodes
electromechanical effects
Electronics
Exact sciences and technology
Membranes
Micro- and nanoelectromechanical devices (mems/nems)
microelectromechanical devices
Microelectromechanical systems
Micromechanical devices
Microwave and submillimeter wave devices, electron transfer devices
Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits
microwave devices
microwave measurements
microwave switches
Radio frequencies
Radio frequency
Radiofrequency microelectromechanical systems
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Switches
title Compact RF Model for Transient Characteristics of MEMS Capacitive Switches
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20RF%20Model%20for%20Transient%20Characteristics%20of%20MEMS%20Capacitive%20Switches&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Halder,%20S.&rft.date=2009-01&rft.volume=57&rft.issue=1&rft.spage=237&rft.epage=242&rft.pages=237-242&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2008.2009039&rft_dat=%3Cproquest_cross%3E34476892%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-e22f1d4f332a14d09a156c0560c306e81d9f1cb69c936a673520fbde96c3a56b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=856922223&rft_id=info:pmid/&rft_ieee_id=4711153&rfr_iscdi=true