Loading…
Compact RF Model for Transient Characteristics of MEMS Capacitive Switches
A compact model is proposed to facilitate the design and simulation of the control waveform of RF microelectromechanical systems (MEMS) capacitive switches with electrostatically actuated membranes. Following conventional approaches, the pull-in motion of a membrane is simulated by an L-R-C network....
Saved in:
Published in: | IEEE transactions on microwave theory and techniques 2009-01, Vol.57 (1), p.237-242 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-e22f1d4f332a14d09a156c0560c306e81d9f1cb69c936a673520fbde96c3a56b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c385t-e22f1d4f332a14d09a156c0560c306e81d9f1cb69c936a673520fbde96c3a56b3 |
container_end_page | 242 |
container_issue | 1 |
container_start_page | 237 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 57 |
creator | Halder, S. Palego, C. Zhen Peng Hwang, J.C.M. Forehand, D.I. Goldsmith, C.L. |
description | A compact model is proposed to facilitate the design and simulation of the control waveform of RF microelectromechanical systems (MEMS) capacitive switches with electrostatically actuated membranes. Following conventional approaches, the pull-in motion of a membrane is simulated by an L-R-C network. However, the present model deviates from conventional approaches by adding another capacitor and a diode to simulate the gradual contact of the membrane with the stationary electrode. After contact, variable mass, spring constant, and damping factor are used to simulate the release process of the membrane. By smoothly bridging the model between pull-in, contact, and release processes, the model can efficiently simulate static and transient S-parameters of the switches up to 50 GHz. The model can be readily installed in popular computer-aided circuit design environments to analyze in the time domain the behavior of the switches and the operation of MEMS-based circuits. |
doi_str_mv | 10.1109/TMTT.2008.2009039 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMTT_2008_2009039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4711153</ieee_id><sourcerecordid>34476892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-e22f1d4f332a14d09a156c0560c306e81d9f1cb69c936a673520fbde96c3a56b3</originalsourceid><addsrcrecordid>eNp9kU1rHDEMhk1JoZu0P6D0YgJJT5NK_hr7GIakH2QpNNOz8Xps4jC7s7FnG_rv42WXHHqoDhJCzyuQXkI-IlwhgvnSL_v-igHofTLAzRuyQCnbxqgWTsgCAHVjhIZ35LSUx9oKCXpBfnTTeuv8TH_d0uU0hJHGKdM-u01JYTPT7sHlOg45lTn5QqdIlzfLe9q5qkpz-hPo_XOa_UMo78nb6MYSPhzrGfl9e9N335q7n1-_d9d3jedazk1gLOIgIufMoRjAOJTKg1TgOaigcTAR_UoZb7hyquWSQVwNwSjPnVQrfkY-H_Zu8_S0C2W261R8GEe3CdOuWK2MFtIIrOTlf0kuRKu0YRU8_wd8nHZ5U6-wWirDavAK4QHyeSolh2i3Oa1d_msR7N4EuzfB7k2wRxOq5uK42BXvxlj_6lN5FTIEhpzLyn06cCmE8DoWLSJKzl8AwHSNqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856922223</pqid></control><display><type>article</type><title>Compact RF Model for Transient Characteristics of MEMS Capacitive Switches</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Halder, S. ; Palego, C. ; Zhen Peng ; Hwang, J.C.M. ; Forehand, D.I. ; Goldsmith, C.L.</creator><creatorcontrib>Halder, S. ; Palego, C. ; Zhen Peng ; Hwang, J.C.M. ; Forehand, D.I. ; Goldsmith, C.L.</creatorcontrib><description>A compact model is proposed to facilitate the design and simulation of the control waveform of RF microelectromechanical systems (MEMS) capacitive switches with electrostatically actuated membranes. Following conventional approaches, the pull-in motion of a membrane is simulated by an L-R-C network. However, the present model deviates from conventional approaches by adding another capacitor and a diode to simulate the gradual contact of the membrane with the stationary electrode. After contact, variable mass, spring constant, and damping factor are used to simulate the release process of the membrane. By smoothly bridging the model between pull-in, contact, and release processes, the model can efficiently simulate static and transient S-parameters of the switches up to 50 GHz. The model can be readily installed in popular computer-aided circuit design environments to analyze in the time domain the behavior of the switches and the operation of MEMS-based circuits.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2008.2009039</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Biomembranes ; Capacitance measurement ; Capacitors ; Circuit design ; Circuit properties ; Circuit simulation ; Computational modeling ; Computer simulation ; Contact ; Dielectric, amorphous and glass solid devices ; Diodes ; Electric, optical and optoelectronic circuits ; Electrodes ; electromechanical effects ; Electronics ; Exact sciences and technology ; Membranes ; Micro- and nanoelectromechanical devices (mems/nems) ; microelectromechanical devices ; Microelectromechanical systems ; Micromechanical devices ; Microwave and submillimeter wave devices, electron transfer devices ; Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits ; microwave devices ; microwave measurements ; microwave switches ; Radio frequencies ; Radio frequency ; Radiofrequency microelectromechanical systems ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Switches</subject><ispartof>IEEE transactions on microwave theory and techniques, 2009-01, Vol.57 (1), p.237-242</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-e22f1d4f332a14d09a156c0560c306e81d9f1cb69c936a673520fbde96c3a56b3</citedby><cites>FETCH-LOGICAL-c385t-e22f1d4f332a14d09a156c0560c306e81d9f1cb69c936a673520fbde96c3a56b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4711153$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21021335$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Halder, S.</creatorcontrib><creatorcontrib>Palego, C.</creatorcontrib><creatorcontrib>Zhen Peng</creatorcontrib><creatorcontrib>Hwang, J.C.M.</creatorcontrib><creatorcontrib>Forehand, D.I.</creatorcontrib><creatorcontrib>Goldsmith, C.L.</creatorcontrib><title>Compact RF Model for Transient Characteristics of MEMS Capacitive Switches</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>A compact model is proposed to facilitate the design and simulation of the control waveform of RF microelectromechanical systems (MEMS) capacitive switches with electrostatically actuated membranes. Following conventional approaches, the pull-in motion of a membrane is simulated by an L-R-C network. However, the present model deviates from conventional approaches by adding another capacitor and a diode to simulate the gradual contact of the membrane with the stationary electrode. After contact, variable mass, spring constant, and damping factor are used to simulate the release process of the membrane. By smoothly bridging the model between pull-in, contact, and release processes, the model can efficiently simulate static and transient S-parameters of the switches up to 50 GHz. The model can be readily installed in popular computer-aided circuit design environments to analyze in the time domain the behavior of the switches and the operation of MEMS-based circuits.</description><subject>Applied sciences</subject><subject>Biomembranes</subject><subject>Capacitance measurement</subject><subject>Capacitors</subject><subject>Circuit design</subject><subject>Circuit properties</subject><subject>Circuit simulation</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Contact</subject><subject>Dielectric, amorphous and glass solid devices</subject><subject>Diodes</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electrodes</subject><subject>electromechanical effects</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Membranes</subject><subject>Micro- and nanoelectromechanical devices (mems/nems)</subject><subject>microelectromechanical devices</subject><subject>Microelectromechanical systems</subject><subject>Micromechanical devices</subject><subject>Microwave and submillimeter wave devices, electron transfer devices</subject><subject>Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits</subject><subject>microwave devices</subject><subject>microwave measurements</subject><subject>microwave switches</subject><subject>Radio frequencies</subject><subject>Radio frequency</subject><subject>Radiofrequency microelectromechanical systems</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Switches</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rHDEMhk1JoZu0P6D0YgJJT5NK_hr7GIakH2QpNNOz8Xps4jC7s7FnG_rv42WXHHqoDhJCzyuQXkI-IlwhgvnSL_v-igHofTLAzRuyQCnbxqgWTsgCAHVjhIZ35LSUx9oKCXpBfnTTeuv8TH_d0uU0hJHGKdM-u01JYTPT7sHlOg45lTn5QqdIlzfLe9q5qkpz-hPo_XOa_UMo78nb6MYSPhzrGfl9e9N335q7n1-_d9d3jedazk1gLOIgIufMoRjAOJTKg1TgOaigcTAR_UoZb7hyquWSQVwNwSjPnVQrfkY-H_Zu8_S0C2W261R8GEe3CdOuWK2MFtIIrOTlf0kuRKu0YRU8_wd8nHZ5U6-wWirDavAK4QHyeSolh2i3Oa1d_msR7N4EuzfB7k2wRxOq5uK42BXvxlj_6lN5FTIEhpzLyn06cCmE8DoWLSJKzl8AwHSNqg</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Halder, S.</creator><creator>Palego, C.</creator><creator>Zhen Peng</creator><creator>Hwang, J.C.M.</creator><creator>Forehand, D.I.</creator><creator>Goldsmith, C.L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200901</creationdate><title>Compact RF Model for Transient Characteristics of MEMS Capacitive Switches</title><author>Halder, S. ; Palego, C. ; Zhen Peng ; Hwang, J.C.M. ; Forehand, D.I. ; Goldsmith, C.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-e22f1d4f332a14d09a156c0560c306e81d9f1cb69c936a673520fbde96c3a56b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Biomembranes</topic><topic>Capacitance measurement</topic><topic>Capacitors</topic><topic>Circuit design</topic><topic>Circuit properties</topic><topic>Circuit simulation</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Contact</topic><topic>Dielectric, amorphous and glass solid devices</topic><topic>Diodes</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electrodes</topic><topic>electromechanical effects</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Membranes</topic><topic>Micro- and nanoelectromechanical devices (mems/nems)</topic><topic>microelectromechanical devices</topic><topic>Microelectromechanical systems</topic><topic>Micromechanical devices</topic><topic>Microwave and submillimeter wave devices, electron transfer devices</topic><topic>Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits</topic><topic>microwave devices</topic><topic>microwave measurements</topic><topic>microwave switches</topic><topic>Radio frequencies</topic><topic>Radio frequency</topic><topic>Radiofrequency microelectromechanical systems</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halder, S.</creatorcontrib><creatorcontrib>Palego, C.</creatorcontrib><creatorcontrib>Zhen Peng</creatorcontrib><creatorcontrib>Hwang, J.C.M.</creatorcontrib><creatorcontrib>Forehand, D.I.</creatorcontrib><creatorcontrib>Goldsmith, C.L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halder, S.</au><au>Palego, C.</au><au>Zhen Peng</au><au>Hwang, J.C.M.</au><au>Forehand, D.I.</au><au>Goldsmith, C.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact RF Model for Transient Characteristics of MEMS Capacitive Switches</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2009-01</date><risdate>2009</risdate><volume>57</volume><issue>1</issue><spage>237</spage><epage>242</epage><pages>237-242</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>A compact model is proposed to facilitate the design and simulation of the control waveform of RF microelectromechanical systems (MEMS) capacitive switches with electrostatically actuated membranes. Following conventional approaches, the pull-in motion of a membrane is simulated by an L-R-C network. However, the present model deviates from conventional approaches by adding another capacitor and a diode to simulate the gradual contact of the membrane with the stationary electrode. After contact, variable mass, spring constant, and damping factor are used to simulate the release process of the membrane. By smoothly bridging the model between pull-in, contact, and release processes, the model can efficiently simulate static and transient S-parameters of the switches up to 50 GHz. The model can be readily installed in popular computer-aided circuit design environments to analyze in the time domain the behavior of the switches and the operation of MEMS-based circuits.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMTT.2008.2009039</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2009-01, Vol.57 (1), p.237-242 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMTT_2008_2009039 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Biomembranes Capacitance measurement Capacitors Circuit design Circuit properties Circuit simulation Computational modeling Computer simulation Contact Dielectric, amorphous and glass solid devices Diodes Electric, optical and optoelectronic circuits Electrodes electromechanical effects Electronics Exact sciences and technology Membranes Micro- and nanoelectromechanical devices (mems/nems) microelectromechanical devices Microelectromechanical systems Micromechanical devices Microwave and submillimeter wave devices, electron transfer devices Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits microwave devices microwave measurements microwave switches Radio frequencies Radio frequency Radiofrequency microelectromechanical systems Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Switches |
title | Compact RF Model for Transient Characteristics of MEMS Capacitive Switches |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20RF%20Model%20for%20Transient%20Characteristics%20of%20MEMS%20Capacitive%20Switches&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Halder,%20S.&rft.date=2009-01&rft.volume=57&rft.issue=1&rft.spage=237&rft.epage=242&rft.pages=237-242&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2008.2009039&rft_dat=%3Cproquest_cross%3E34476892%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-e22f1d4f332a14d09a156c0560c306e81d9f1cb69c936a673520fbde96c3a56b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=856922223&rft_id=info:pmid/&rft_ieee_id=4711153&rfr_iscdi=true |