Loading…

A Physics-Based Causal Bond-Wire Model for RF Applications

A predictive causal physics-based compact model that describes the electrical behavior of multiple bond wires as a function of signal frequency and geometry of the wires is presented. It takes into account the inductive coupling between the wires, the frequency-dependent losses, and the capacitance...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on microwave theory and techniques 2012-12, Vol.60 (12), p.3683-3692
Main Authors: Nazarian, A. L., Tiemeijer, L. F., John, D. L., van Steenwijk, J. A., de Langen, M., Pijper, R. M. T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-e6d4c1483c0980356cef3a72c0a0eb57ec840da4747e2bc9ba5ec24938e37cf13
cites cdi_FETCH-LOGICAL-c361t-e6d4c1483c0980356cef3a72c0a0eb57ec840da4747e2bc9ba5ec24938e37cf13
container_end_page 3692
container_issue 12
container_start_page 3683
container_title IEEE transactions on microwave theory and techniques
container_volume 60
creator Nazarian, A. L.
Tiemeijer, L. F.
John, D. L.
van Steenwijk, J. A.
de Langen, M.
Pijper, R. M. T.
description A predictive causal physics-based compact model that describes the electrical behavior of multiple bond wires as a function of signal frequency and geometry of the wires is presented. It takes into account the inductive coupling between the wires, the frequency-dependent losses, and the capacitance between the wires and the ground plane. The model does not require any fitting parameters and places no restriction on the shape of the bond wires. Model predictions of resistance, of capacitance to the ground plane, and of self and mutual inductances of bond wires with different shapes were compared to the corresponding measured quantities. All inductive calculations use closed formulas that give a better approximations than the state-of-the-art. Furthermore, the causal nature of this model implies that it may be used for time-domain simulations.
doi_str_mv 10.1109/TMTT.2012.2217983
format article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMTT_2012_2217983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6320645</ieee_id><sourcerecordid>26791214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-e6d4c1483c0980356cef3a72c0a0eb57ec840da4747e2bc9ba5ec24938e37cf13</originalsourceid><addsrcrecordid>eNo9j01LAzEURYMoWKs_QNxk4zLjy3firi1WhRZFRlwOaeYNjoydIamL_ntbWrp6XN49Fw4htxwKzsE_lMuyLARwUQjBrXfyjIy41pZ5Y-GcjAC4Y145uCRXOf_sotLgRuRxQt-_t7mNmU1DxprOwl8OHZ3265p9tQnpsq-xo02f6MecToaha2PYtP06X5OLJnQZb453TD7nT-XshS3enl9nkwWL0vANQ1OryJWTEbwDqU3ERgYrIgTAlbYYnYI6KKssilX0q6AxCuWlQ2ljw-WY8MNuTH3OCZtqSO1vSNuKQ7WXr_by1V6-OsrvmPsDM4QcQ9eksI5tPoHCWM8FV7ve3aHXIuLpbaQAo7T8B1rmYWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Physics-Based Causal Bond-Wire Model for RF Applications</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Nazarian, A. L. ; Tiemeijer, L. F. ; John, D. L. ; van Steenwijk, J. A. ; de Langen, M. ; Pijper, R. M. T.</creator><creatorcontrib>Nazarian, A. L. ; Tiemeijer, L. F. ; John, D. L. ; van Steenwijk, J. A. ; de Langen, M. ; Pijper, R. M. T.</creatorcontrib><description>A predictive causal physics-based compact model that describes the electrical behavior of multiple bond wires as a function of signal frequency and geometry of the wires is presented. It takes into account the inductive coupling between the wires, the frequency-dependent losses, and the capacitance between the wires and the ground plane. The model does not require any fitting parameters and places no restriction on the shape of the bond wires. Model predictions of resistance, of capacitance to the ground plane, and of self and mutual inductances of bond wires with different shapes were compared to the corresponding measured quantities. All inductive calculations use closed formulas that give a better approximations than the state-of-the-art. Furthermore, the causal nature of this model implies that it may be used for time-domain simulations.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2012.2217983</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Approximation methods ; Bond wire ; Capacitance ; compact model ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Exact sciences and technology ; Impedance ; Inductance ; Integrated circuit modeling ; mutual inductance ; resistance ; self inductance ; Wires</subject><ispartof>IEEE transactions on microwave theory and techniques, 2012-12, Vol.60 (12), p.3683-3692</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-e6d4c1483c0980356cef3a72c0a0eb57ec840da4747e2bc9ba5ec24938e37cf13</citedby><cites>FETCH-LOGICAL-c361t-e6d4c1483c0980356cef3a72c0a0eb57ec840da4747e2bc9ba5ec24938e37cf13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6320645$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26791214$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nazarian, A. L.</creatorcontrib><creatorcontrib>Tiemeijer, L. F.</creatorcontrib><creatorcontrib>John, D. L.</creatorcontrib><creatorcontrib>van Steenwijk, J. A.</creatorcontrib><creatorcontrib>de Langen, M.</creatorcontrib><creatorcontrib>Pijper, R. M. T.</creatorcontrib><title>A Physics-Based Causal Bond-Wire Model for RF Applications</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>A predictive causal physics-based compact model that describes the electrical behavior of multiple bond wires as a function of signal frequency and geometry of the wires is presented. It takes into account the inductive coupling between the wires, the frequency-dependent losses, and the capacitance between the wires and the ground plane. The model does not require any fitting parameters and places no restriction on the shape of the bond wires. Model predictions of resistance, of capacitance to the ground plane, and of self and mutual inductances of bond wires with different shapes were compared to the corresponding measured quantities. All inductive calculations use closed formulas that give a better approximations than the state-of-the-art. Furthermore, the causal nature of this model implies that it may be used for time-domain simulations.</description><subject>Applied sciences</subject><subject>Approximation methods</subject><subject>Bond wire</subject><subject>Capacitance</subject><subject>compact model</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Impedance</subject><subject>Inductance</subject><subject>Integrated circuit modeling</subject><subject>mutual inductance</subject><subject>resistance</subject><subject>self inductance</subject><subject>Wires</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9j01LAzEURYMoWKs_QNxk4zLjy3firi1WhRZFRlwOaeYNjoydIamL_ntbWrp6XN49Fw4htxwKzsE_lMuyLARwUQjBrXfyjIy41pZ5Y-GcjAC4Y145uCRXOf_sotLgRuRxQt-_t7mNmU1DxprOwl8OHZ3265p9tQnpsq-xo02f6MecToaha2PYtP06X5OLJnQZb453TD7nT-XshS3enl9nkwWL0vANQ1OryJWTEbwDqU3ERgYrIgTAlbYYnYI6KKssilX0q6AxCuWlQ2ljw-WY8MNuTH3OCZtqSO1vSNuKQ7WXr_by1V6-OsrvmPsDM4QcQ9eksI5tPoHCWM8FV7ve3aHXIuLpbaQAo7T8B1rmYWw</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Nazarian, A. L.</creator><creator>Tiemeijer, L. F.</creator><creator>John, D. L.</creator><creator>van Steenwijk, J. A.</creator><creator>de Langen, M.</creator><creator>Pijper, R. M. T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121201</creationdate><title>A Physics-Based Causal Bond-Wire Model for RF Applications</title><author>Nazarian, A. L. ; Tiemeijer, L. F. ; John, D. L. ; van Steenwijk, J. A. ; de Langen, M. ; Pijper, R. M. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-e6d4c1483c0980356cef3a72c0a0eb57ec840da4747e2bc9ba5ec24938e37cf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Approximation methods</topic><topic>Bond wire</topic><topic>Capacitance</topic><topic>compact model</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Impedance</topic><topic>Inductance</topic><topic>Integrated circuit modeling</topic><topic>mutual inductance</topic><topic>resistance</topic><topic>self inductance</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nazarian, A. L.</creatorcontrib><creatorcontrib>Tiemeijer, L. F.</creatorcontrib><creatorcontrib>John, D. L.</creatorcontrib><creatorcontrib>van Steenwijk, J. A.</creatorcontrib><creatorcontrib>de Langen, M.</creatorcontrib><creatorcontrib>Pijper, R. M. T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nazarian, A. L.</au><au>Tiemeijer, L. F.</au><au>John, D. L.</au><au>van Steenwijk, J. A.</au><au>de Langen, M.</au><au>Pijper, R. M. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Physics-Based Causal Bond-Wire Model for RF Applications</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>60</volume><issue>12</issue><spage>3683</spage><epage>3692</epage><pages>3683-3692</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>A predictive causal physics-based compact model that describes the electrical behavior of multiple bond wires as a function of signal frequency and geometry of the wires is presented. It takes into account the inductive coupling between the wires, the frequency-dependent losses, and the capacitance between the wires and the ground plane. The model does not require any fitting parameters and places no restriction on the shape of the bond wires. Model predictions of resistance, of capacitance to the ground plane, and of self and mutual inductances of bond wires with different shapes were compared to the corresponding measured quantities. All inductive calculations use closed formulas that give a better approximations than the state-of-the-art. Furthermore, the causal nature of this model implies that it may be used for time-domain simulations.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMTT.2012.2217983</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2012-12, Vol.60 (12), p.3683-3692
issn 0018-9480
1557-9670
language eng
recordid cdi_crossref_primary_10_1109_TMTT_2012_2217983
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Approximation methods
Bond wire
Capacitance
compact model
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronics
Exact sciences and technology
Impedance
Inductance
Integrated circuit modeling
mutual inductance
resistance
self inductance
Wires
title A Physics-Based Causal Bond-Wire Model for RF Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Physics-Based%20Causal%20Bond-Wire%20Model%20for%20RF%20Applications&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Nazarian,%20A.%20L.&rft.date=2012-12-01&rft.volume=60&rft.issue=12&rft.spage=3683&rft.epage=3692&rft.pages=3683-3692&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2012.2217983&rft_dat=%3Cpascalfrancis_cross%3E26791214%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-e6d4c1483c0980356cef3a72c0a0eb57ec840da4747e2bc9ba5ec24938e37cf13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6320645&rfr_iscdi=true