Loading…

Design of High-Q Millimeter-Wave Oscillator by Differential Transmission Line Loaded With Metamaterial Resonator in 65-nm CMOS

In this paper, low phase-noise, low-power, and compact oscillators are demonstrated at the millimeter-wave region based on differential transmission lines (DTLs) loaded with metamaterial resonators. There are two types of metamaterial resonators explored: split-ring resonators (SRRs) and complementa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on microwave theory and techniques 2013-05, Vol.61 (5), p.1892-1902
Main Authors: Shang, Yang, Yu, Hao, Cai, Deyun, Ren, Junyan, Yeo, Kiat Seng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, low phase-noise, low-power, and compact oscillators are demonstrated at the millimeter-wave region based on differential transmission lines (DTLs) loaded with metamaterial resonators. There are two types of metamaterial resonators explored: split-ring resonators (SRRs) and complementary split-ring resonators (CSRRs). By creating a sharp stopband at the resonance frequency from a loaded SRR or CSRR, the backward electrical-magnetic (EM) wave is reflected to couple with the forward EM wave to form a standing EM wave in the DTL host, which results in a high- Q and low-loss millimeter-wave resonator with stable EM energy stored. The resulting DTL-SRR and DTL-CSRR resonators are deployed for designs of millimeter-wave oscillators in 65-nm CMOS. The measurement results show that one DTL-SRR-based oscillator works at 76 GHz with power consumption of 2.7 mW, phase noise of -108.8 dBc/Hz at 10-MHz offset, and figure-of-merit (FOM) of -182.1 dBc/Hz , which is 4 dB better than that of a 76-GHz standing-wave oscillator implemented on the same chip. Moreover, another DTL-CSRR-based oscillator works at 96 GHz with power consumption of 7.5 mW. Compared to the existing oscillators with an LC-tank-based resonator, the DTL-CSRR oscillator has much lower phase noise of -111.5 dBc/Hz at 10-MHz offset and a FOM of -182.4 dBc/Hz.
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2013.2253489