Loading…

A Receiver for Inductive Ear-to-Ear Communication

This paper proposes a receiver circuit for inductive ear-to-ear communication. Its input resonance structure, an LCR front-end, is optimized for both a data transmission rate of 100 kbit/s and maximum voltage excess. Following an analytical study, the optimal quality factor Q_{\text {LCR}} is foun...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on microwave theory and techniques 2018-12, Vol.66 (12), p.5151-5155
Main Authors: Edelmann, Jan-Christoph, Stojakovic, Rade, Ussmueller, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a receiver circuit for inductive ear-to-ear communication. Its input resonance structure, an LCR front-end, is optimized for both a data transmission rate of 100 kbit/s and maximum voltage excess. Following an analytical study, the optimal quality factor Q_{\text {LCR}} is found to be 12.8. Subsequent amplification of ON-OFF keyed bits is performed with a four-stage JFET amplifier, introducing a total amplification of 68.6 dB at a sensitivity of 31.6~\mu \text{V} . Each stage is implemented in common-source JFET topology containing a current source in its drain path instead of the conventional drain resistor. This modification allows for a per-stage increase in voltage amplification by a factor of 1.87, avoiding extra quiescent current (detailed circuit theory is added). A hardware realization for signal demodulation reconstructs the baseband signal. In combination with a dedicated transmitter, a Hartley Oscillator, the inductive ear-to-ear transmission system demonstrates a reliable functionality over a distance of 18 cm. Operation is possible with a standard 1.5 V battery cell requiring low currents on a discrete benchtop prototype [transmitter: 0.8 mA; receiver: 4.0 mA]. Applying a carrier frequency of 3.175 MHz, the system is fully compliant with ITU regulation 5.115.
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2018.2872022