Loading…

A Receiver for Inductive Ear-to-Ear Communication

This paper proposes a receiver circuit for inductive ear-to-ear communication. Its input resonance structure, an LCR front-end, is optimized for both a data transmission rate of 100 kbit/s and maximum voltage excess. Following an analytical study, the optimal quality factor Q_{\text {LCR}} is foun...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on microwave theory and techniques 2018-12, Vol.66 (12), p.5151-5155
Main Authors: Edelmann, Jan-Christoph, Stojakovic, Rade, Ussmueller, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c245t-30fe8dbff3eb5840cd900652df9e03293e367e11b459bd68e4949eb2ce0e479e3
container_end_page 5155
container_issue 12
container_start_page 5151
container_title IEEE transactions on microwave theory and techniques
container_volume 66
creator Edelmann, Jan-Christoph
Stojakovic, Rade
Ussmueller, Thomas
description This paper proposes a receiver circuit for inductive ear-to-ear communication. Its input resonance structure, an LCR front-end, is optimized for both a data transmission rate of 100 kbit/s and maximum voltage excess. Following an analytical study, the optimal quality factor Q_{\text {LCR}} is found to be 12.8. Subsequent amplification of ON-OFF keyed bits is performed with a four-stage JFET amplifier, introducing a total amplification of 68.6 dB at a sensitivity of 31.6~\mu \text{V} . Each stage is implemented in common-source JFET topology containing a current source in its drain path instead of the conventional drain resistor. This modification allows for a per-stage increase in voltage amplification by a factor of 1.87, avoiding extra quiescent current (detailed circuit theory is added). A hardware realization for signal demodulation reconstructs the baseband signal. In combination with a dedicated transmitter, a Hartley Oscillator, the inductive ear-to-ear transmission system demonstrates a reliable functionality over a distance of 18 cm. Operation is possible with a standard 1.5 V battery cell requiring low currents on a discrete benchtop prototype [transmitter: 0.8 mA; receiver: 4.0 mA]. Applying a carrier frequency of 3.175 MHz, the system is fully compliant with ITU regulation 5.115.
doi_str_mv 10.1109/TMTT.2018.2872022
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMTT_2018_2872022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8488664</ieee_id><sourcerecordid>2157909224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-30fe8dbff3eb5840cd900652df9e03293e367e11b459bd68e4949eb2ce0e479e3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHwp-Jx5869NHkeZOpgIUp9Dm95Ah2tm2gp-ezM6fDoc7jnnwo-QewYrxsA8VW9VteLA9IrrggPnF2TBlCqoyQu4JAtIJ2qkhmtyMwz7ZKUCvSBsnX2gw-4HY-ZDzLZ9O7kx2WxTRzoGmiQrw-Ew9Z2rxy70t-TK118D3p11ST6fN1X5SnfvL9tyvaOOSzVSAR5123gvsFFagmsNQK546w2C4EagyAtkrJHKNG2uURppsOEOAWVhUCzJ47x7jOF7wmG0-zDFPr20nKnCgOFcphSbUy6GYYjo7TF2hzr-Wgb2RMaeyNgTGXsmkzoPc6dDxP-8llrnuRR_QNxduA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157909224</pqid></control><display><type>article</type><title>A Receiver for Inductive Ear-to-Ear Communication</title><source>IEEE Xplore (Online service)</source><creator>Edelmann, Jan-Christoph ; Stojakovic, Rade ; Ussmueller, Thomas</creator><creatorcontrib>Edelmann, Jan-Christoph ; Stojakovic, Rade ; Ussmueller, Thomas</creatorcontrib><description><![CDATA[This paper proposes a receiver circuit for inductive ear-to-ear communication. Its input resonance structure, an LCR front-end, is optimized for both a data transmission rate of 100 kbit/s and maximum voltage excess. Following an analytical study, the optimal quality factor <inline-formula> <tex-math notation="LaTeX">Q_{\text {LCR}} </tex-math></inline-formula> is found to be 12.8. Subsequent amplification of ON-OFF keyed bits is performed with a four-stage JFET amplifier, introducing a total amplification of 68.6 dB at a sensitivity of <inline-formula> <tex-math notation="LaTeX">31.6~\mu \text{V} </tex-math></inline-formula>. Each stage is implemented in common-source JFET topology containing a current source in its drain path instead of the conventional drain resistor. This modification allows for a per-stage increase in voltage amplification by a factor of 1.87, avoiding extra quiescent current (detailed circuit theory is added). A hardware realization for signal demodulation reconstructs the baseband signal. In combination with a dedicated transmitter, a Hartley Oscillator, the inductive ear-to-ear transmission system demonstrates a reliable functionality over a distance of 18 cm. Operation is possible with a standard 1.5 V battery cell requiring low currents on a discrete benchtop prototype [transmitter: 0.8 mA; receiver: 4.0 mA]. Applying a carrier frequency of 3.175 MHz, the system is fully compliant with ITU regulation 5.115.]]></description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2018.2872022</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amplification ; Carrier frequencies ; Circuit topology ; Circuits ; Current sources ; Data transmission ; Demodulation ; Discrete receiver ; Ear ; ear-to-ear communication ; Electric potential ; inductive link ; JFET ; JFETs ; Low currents ; multistage amplifier ; Oscillators ; parallel front-end ; Q factors ; Radio transmitters ; Receivers</subject><ispartof>IEEE transactions on microwave theory and techniques, 2018-12, Vol.66 (12), p.5151-5155</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-30fe8dbff3eb5840cd900652df9e03293e367e11b459bd68e4949eb2ce0e479e3</cites><orcidid>0000-0001-7174-4670 ; 0000-0002-0788-9645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8488664$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Edelmann, Jan-Christoph</creatorcontrib><creatorcontrib>Stojakovic, Rade</creatorcontrib><creatorcontrib>Ussmueller, Thomas</creatorcontrib><title>A Receiver for Inductive Ear-to-Ear Communication</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description><![CDATA[This paper proposes a receiver circuit for inductive ear-to-ear communication. Its input resonance structure, an LCR front-end, is optimized for both a data transmission rate of 100 kbit/s and maximum voltage excess. Following an analytical study, the optimal quality factor <inline-formula> <tex-math notation="LaTeX">Q_{\text {LCR}} </tex-math></inline-formula> is found to be 12.8. Subsequent amplification of ON-OFF keyed bits is performed with a four-stage JFET amplifier, introducing a total amplification of 68.6 dB at a sensitivity of <inline-formula> <tex-math notation="LaTeX">31.6~\mu \text{V} </tex-math></inline-formula>. Each stage is implemented in common-source JFET topology containing a current source in its drain path instead of the conventional drain resistor. This modification allows for a per-stage increase in voltage amplification by a factor of 1.87, avoiding extra quiescent current (detailed circuit theory is added). A hardware realization for signal demodulation reconstructs the baseband signal. In combination with a dedicated transmitter, a Hartley Oscillator, the inductive ear-to-ear transmission system demonstrates a reliable functionality over a distance of 18 cm. Operation is possible with a standard 1.5 V battery cell requiring low currents on a discrete benchtop prototype [transmitter: 0.8 mA; receiver: 4.0 mA]. Applying a carrier frequency of 3.175 MHz, the system is fully compliant with ITU regulation 5.115.]]></description><subject>Amplification</subject><subject>Carrier frequencies</subject><subject>Circuit topology</subject><subject>Circuits</subject><subject>Current sources</subject><subject>Data transmission</subject><subject>Demodulation</subject><subject>Discrete receiver</subject><subject>Ear</subject><subject>ear-to-ear communication</subject><subject>Electric potential</subject><subject>inductive link</subject><subject>JFET</subject><subject>JFETs</subject><subject>Low currents</subject><subject>multistage amplifier</subject><subject>Oscillators</subject><subject>parallel front-end</subject><subject>Q factors</subject><subject>Radio transmitters</subject><subject>Receivers</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOKcfQHwp-Jx5869NHkeZOpgIUp9Dm95Ah2tm2gp-ezM6fDoc7jnnwo-QewYrxsA8VW9VteLA9IrrggPnF2TBlCqoyQu4JAtIJ2qkhmtyMwz7ZKUCvSBsnX2gw-4HY-ZDzLZ9O7kx2WxTRzoGmiQrw-Ew9Z2rxy70t-TK118D3p11ST6fN1X5SnfvL9tyvaOOSzVSAR5123gvsFFagmsNQK546w2C4EagyAtkrJHKNG2uURppsOEOAWVhUCzJ47x7jOF7wmG0-zDFPr20nKnCgOFcphSbUy6GYYjo7TF2hzr-Wgb2RMaeyNgTGXsmkzoPc6dDxP-8llrnuRR_QNxduA</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Edelmann, Jan-Christoph</creator><creator>Stojakovic, Rade</creator><creator>Ussmueller, Thomas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7174-4670</orcidid><orcidid>https://orcid.org/0000-0002-0788-9645</orcidid></search><sort><creationdate>20181201</creationdate><title>A Receiver for Inductive Ear-to-Ear Communication</title><author>Edelmann, Jan-Christoph ; Stojakovic, Rade ; Ussmueller, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-30fe8dbff3eb5840cd900652df9e03293e367e11b459bd68e4949eb2ce0e479e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amplification</topic><topic>Carrier frequencies</topic><topic>Circuit topology</topic><topic>Circuits</topic><topic>Current sources</topic><topic>Data transmission</topic><topic>Demodulation</topic><topic>Discrete receiver</topic><topic>Ear</topic><topic>ear-to-ear communication</topic><topic>Electric potential</topic><topic>inductive link</topic><topic>JFET</topic><topic>JFETs</topic><topic>Low currents</topic><topic>multistage amplifier</topic><topic>Oscillators</topic><topic>parallel front-end</topic><topic>Q factors</topic><topic>Radio transmitters</topic><topic>Receivers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edelmann, Jan-Christoph</creatorcontrib><creatorcontrib>Stojakovic, Rade</creatorcontrib><creatorcontrib>Ussmueller, Thomas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edelmann, Jan-Christoph</au><au>Stojakovic, Rade</au><au>Ussmueller, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Receiver for Inductive Ear-to-Ear Communication</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>66</volume><issue>12</issue><spage>5151</spage><epage>5155</epage><pages>5151-5155</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract><![CDATA[This paper proposes a receiver circuit for inductive ear-to-ear communication. Its input resonance structure, an LCR front-end, is optimized for both a data transmission rate of 100 kbit/s and maximum voltage excess. Following an analytical study, the optimal quality factor <inline-formula> <tex-math notation="LaTeX">Q_{\text {LCR}} </tex-math></inline-formula> is found to be 12.8. Subsequent amplification of ON-OFF keyed bits is performed with a four-stage JFET amplifier, introducing a total amplification of 68.6 dB at a sensitivity of <inline-formula> <tex-math notation="LaTeX">31.6~\mu \text{V} </tex-math></inline-formula>. Each stage is implemented in common-source JFET topology containing a current source in its drain path instead of the conventional drain resistor. This modification allows for a per-stage increase in voltage amplification by a factor of 1.87, avoiding extra quiescent current (detailed circuit theory is added). A hardware realization for signal demodulation reconstructs the baseband signal. In combination with a dedicated transmitter, a Hartley Oscillator, the inductive ear-to-ear transmission system demonstrates a reliable functionality over a distance of 18 cm. Operation is possible with a standard 1.5 V battery cell requiring low currents on a discrete benchtop prototype [transmitter: 0.8 mA; receiver: 4.0 mA]. Applying a carrier frequency of 3.175 MHz, the system is fully compliant with ITU regulation 5.115.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2018.2872022</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7174-4670</orcidid><orcidid>https://orcid.org/0000-0002-0788-9645</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2018-12, Vol.66 (12), p.5151-5155
issn 0018-9480
1557-9670
language eng
recordid cdi_crossref_primary_10_1109_TMTT_2018_2872022
source IEEE Xplore (Online service)
subjects Amplification
Carrier frequencies
Circuit topology
Circuits
Current sources
Data transmission
Demodulation
Discrete receiver
Ear
ear-to-ear communication
Electric potential
inductive link
JFET
JFETs
Low currents
multistage amplifier
Oscillators
parallel front-end
Q factors
Radio transmitters
Receivers
title A Receiver for Inductive Ear-to-Ear Communication
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Receiver%20for%20Inductive%20Ear-to-Ear%20Communication&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Edelmann,%20Jan-Christoph&rft.date=2018-12-01&rft.volume=66&rft.issue=12&rft.spage=5151&rft.epage=5155&rft.pages=5151-5155&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2018.2872022&rft_dat=%3Cproquest_cross%3E2157909224%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-30fe8dbff3eb5840cd900652df9e03293e367e11b459bd68e4949eb2ce0e479e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2157909224&rft_id=info:pmid/&rft_ieee_id=8488664&rfr_iscdi=true