Loading…
Exploring Fine-Grained Fault Tolerance for Nanotechnology Devices With the Recursive NanoBox Processor Grid
Advanced molecular nanotechnology devices are predicted to have exceedingly high transient fault rates and large numbers of inherent device defects compared to conventional CMOS devices. We describe and evaluate the Recursive NanoBox Processor Grid as an application specific, fault-tolerant, paralle...
Saved in:
Published in: | IEEE transactions on nanotechnology 2006-09, Vol.5 (5), p.575-586 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Advanced molecular nanotechnology devices are predicted to have exceedingly high transient fault rates and large numbers of inherent device defects compared to conventional CMOS devices. We describe and evaluate the Recursive NanoBox Processor Grid as an application specific, fault-tolerant, parallel computing system designed for fabrication with unreliable nanotechnology devices. In this study we construct hardware description language models of a NanoBox Processor cell and evaluate the effectiveness of our recursive fault masking approach in the presence of random errors. Our analysis shows that complex circuits constructed with encoded lookup tables can operate correctly despite 2% of the nodes being in error. The circuits operate partially correct with up to 4% of the nodes being in error |
---|---|
ISSN: | 1536-125X 1941-0085 |
DOI: | 10.1109/TNANO.2006.880901 |