Loading…

DFT Modeling of Bulk-Modulated Carbon Nanotube Field-Effect Transistors

We report density-functional theory (DFT) atomistic simulations of the nonequilibrium transport properties of carbon nanotube (CNT) field-effect transistors (FETs). Results have been obtained within a self-consistent approach based on the nonequilibrium Green's functions (NEGF) scheme. We show...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nanotechnology 2007-01, Vol.6 (1), p.13-21
Main Authors: Latessa, L., Pecchia, A., Di Carlo, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report density-functional theory (DFT) atomistic simulations of the nonequilibrium transport properties of carbon nanotube (CNT) field-effect transistors (FETs). Results have been obtained within a self-consistent approach based on the nonequilibrium Green's functions (NEGF) scheme. We show that, as the current modulation mechanism is based on the local screening properties of the nanotube channel, a completely new, negative quantum capacitance regime can be entered by the device. We show how a well-tempered device design can be accomplished in this regime by choosing suitable doping profiles and gate contact parameters. At the same time, we detail the fundamental physical mechanisms underlying the bulk-switching operation, including them in a very practical and accurate model, whose parameters can be easily controlled in order to improve the device performance. The dependence of the nanotube screening properties on the temperature is finally explained by means of a self-consistent temperature analysis
ISSN:1536-125X
1941-0085
DOI:10.1109/TNANO.2006.886782