Loading…
Enhanced Osteogenesis of Human Mesenchymal Stem Cells in Presence of Single-Walled Carbon Nanotubes
Human mesenchymal stem cells (hMSCs) have attracted significant attention for tissue engineering because of their ability to differentiate into bone cells, chondrocytes, adipocytes, and muscle cells. Single-walled carbon nanotubes (SWCNTs) have been considered as a potential material for tissue engi...
Saved in:
Published in: | IEEE transactions on nanobioscience 2019-07, Vol.18 (3), p.463-468 |
---|---|
Main Authors: | , , , , , , |
Format: | Magazinearticle |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Human mesenchymal stem cells (hMSCs) have attracted significant attention for tissue engineering because of their ability to differentiate into bone cells, chondrocytes, adipocytes, and muscle cells. Single-walled carbon nanotubes (SWCNTs) have been considered as a potential material for tissue engineering applications due to their unique properties, such as high aspect ratio, excellent electrocatalytic activity, and biocompatibility. Here we prepared exfoliated SWCNTs layers through an ultra-sonication process in the acidic medium and evaluated their cytotoxicity using hMSCs. Improved viability and osteogenesis of hMSCs were observed in the presence of exfoliated SWCNTs. Besides, the higher expression of osteogenic differentiation-related genes in the presence of exfoliated SWCNTs further confirmed their enhanced osteogenic nature. These results indicated the potential of SWCNTs as a biomaterial for tissue engineering applications. |
---|---|
ISSN: | 1536-1241 1558-2639 |
DOI: | 10.1109/TNB.2019.2914127 |