Loading…

Delay-Guaranteed Cross-Layer Scheduling in Multihop Wireless Networks

In this paper, we propose a cross-layer scheduling algorithm that achieves a throughput " ε-close" to the optimal throughput in multihop wireless networks with a tradeoff of O([1/(ε)]) in average end-to-end delay guarantees. The algorithm guarantees finite buffer sizes and aims to solve a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on networking 2013-12, Vol.21 (6), p.1696-1707
Main Authors: Dongyue Xue, Ekici, Eylem
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we propose a cross-layer scheduling algorithm that achieves a throughput " ε-close" to the optimal throughput in multihop wireless networks with a tradeoff of O([1/(ε)]) in average end-to-end delay guarantees. The algorithm guarantees finite buffer sizes and aims to solve a joint congestion control, routing, and scheduling problem in a multihop wireless network while satisfying per-flow average end-to-end delay constraints and minimum data rate requirements. This problem has been solved for both backlogged as well as arbitrary arrival rate systems. Moreover, we discuss the design of a class of low-complexity suboptimal algorithms, effects of delayed feedback on the optimal algorithm, and extensions of the proposed algorithm to different interference models with arbitrary link capacities.
ISSN:1063-6692
1558-2566
DOI:10.1109/TNET.2012.2230404