Loading…

Ensuring Threshold AoI for UAV-Assisted Mobile Crowdsensing by Multi-Agent Deep Reinforcement Learning With Transformer

Unmanned aerial vehicle (UAV) crowdsensing (UCS) is an emerging data collection paradigm to provide reliable and high quality urban sensing services, with age-of-information (AoI) requirement to measure data freshness in real-time applications. In this paper, we explicitly consider the case to ensur...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on networking 2024-02, Vol.32 (1), p.1-16
Main Authors: Wang, Hao, Liu, Chi Harold, Yang, Haoming, Wang, Guoren, Leung, Kin K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c246t-e172f36d78b07831a6c53b66c786336d90bd11290b27b22c759311006d77eee73
container_end_page 16
container_issue 1
container_start_page 1
container_title IEEE/ACM transactions on networking
container_volume 32
creator Wang, Hao
Liu, Chi Harold
Yang, Haoming
Wang, Guoren
Leung, Kin K.
description Unmanned aerial vehicle (UAV) crowdsensing (UCS) is an emerging data collection paradigm to provide reliable and high quality urban sensing services, with age-of-information (AoI) requirement to measure data freshness in real-time applications. In this paper, we explicitly consider the case to ensure that the attained AoI always stay within a specific threshold. The goal is to maximize the total amount of collected data from diverse Point-of-Interests (PoIs) while minimizing AoI and AoI threshold violation ratio under limited energy supplement. To this end, we propose a decentralized multi-agent deep reinforcement learning framework called "DRL-UCS( \text{AoI}_{th} )" for multi-UAV trajectory planning, which consists of a novel transformer-enhanced distributed architecture and an adaptive intrinsic reward mechanism for spatial cooperation and exploration. Extensive results and trajectory visualization on two real-world datasets in Beijing and San Francisco show that, DRL-UCS( \text{AoI}_{th} ) consistently outperforms all nine baselines when varying the number of UAVs, AoI threshold and generated data amount in a timeslot.
doi_str_mv 10.1109/TNET.2023.3289172
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNET_2023_3289172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10181012</ieee_id><sourcerecordid>2929203913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-e172f36d78b07831a6c53b66c786336d90bd11290b27b22c759311006d77eee73</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKc_QPAi4HVnPmzSXpY5dbApSKeXoR-nW0aXzKRl7N-bsl1ICCecvE8OeRC6p2RCKUmf8o9ZPmGE8QlnSUolu0AjGsdJxGIhLsOZCB4JkbJrdOP9lhDKCRMjdJgZ3ztt1jjfOPAb29Y4s3PcWIdX2XeUea99BzVe2lK3gKfOHmoPxg9IecTLvu10lK3BdPgFYI-_QJsAV7AbWgsonBmiP7rb4NwVxofLHbhbdNUUrYe7cx2j1essn75Hi8-3-TRbRBV7Fl0E4ScNF7VMSiITTgtRxbwUopKJ4KGfkrKmlIXCZMlYJeOUBx8kEBIAJB-jx9O7e2d_e_Cd2tremTBSsTQswlPKQ4qeUpWz3jto1N7pXeGOihI1-FWDXzX4VWe_gXk4MToM-penSdiM_wGNKHZ5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929203913</pqid></control><display><type>article</type><title>Ensuring Threshold AoI for UAV-Assisted Mobile Crowdsensing by Multi-Agent Deep Reinforcement Learning With Transformer</title><source>IEEE Electronic Library (IEL) Journals</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Wang, Hao ; Liu, Chi Harold ; Yang, Haoming ; Wang, Guoren ; Leung, Kin K.</creator><creatorcontrib>Wang, Hao ; Liu, Chi Harold ; Yang, Haoming ; Wang, Guoren ; Leung, Kin K.</creatorcontrib><description><![CDATA[Unmanned aerial vehicle (UAV) crowdsensing (UCS) is an emerging data collection paradigm to provide reliable and high quality urban sensing services, with age-of-information (AoI) requirement to measure data freshness in real-time applications. In this paper, we explicitly consider the case to ensure that the attained AoI always stay within a specific threshold. The goal is to maximize the total amount of collected data from diverse Point-of-Interests (PoIs) while minimizing AoI and AoI threshold violation ratio under limited energy supplement. To this end, we propose a decentralized multi-agent deep reinforcement learning framework called "DRL-UCS(<inline-formula> <tex-math notation="LaTeX">\text{AoI}_{th}</tex-math> </inline-formula>)" for multi-UAV trajectory planning, which consists of a novel transformer-enhanced distributed architecture and an adaptive intrinsic reward mechanism for spatial cooperation and exploration. Extensive results and trajectory visualization on two real-world datasets in Beijing and San Francisco show that, DRL-UCS(<inline-formula> <tex-math notation="LaTeX">\text{AoI}_{th}</tex-math> </inline-formula>) consistently outperforms all nine baselines when varying the number of UAVs, AoI threshold and generated data amount in a timeslot.]]></description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2023.3289172</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>AoI ; Autonomous aerial vehicles ; Crowdsensing ; Data collection ; Data integrity ; Deep learning ; multi-agent deep reinforcement learning ; Multiagent systems ; Optimization ; Sensors ; Trajectory ; Trajectory planning ; transformer ; Transformers ; UAV crowdsensing ; Unmanned aerial vehicles</subject><ispartof>IEEE/ACM transactions on networking, 2024-02, Vol.32 (1), p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-e172f36d78b07831a6c53b66c786336d90bd11290b27b22c759311006d77eee73</cites><orcidid>0000-0002-0252-329X ; 0009-0004-0199-0488 ; 0000-0002-3860-6257 ; 0000-0002-0181-8379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10181012$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Liu, Chi Harold</creatorcontrib><creatorcontrib>Yang, Haoming</creatorcontrib><creatorcontrib>Wang, Guoren</creatorcontrib><creatorcontrib>Leung, Kin K.</creatorcontrib><title>Ensuring Threshold AoI for UAV-Assisted Mobile Crowdsensing by Multi-Agent Deep Reinforcement Learning With Transformer</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description><![CDATA[Unmanned aerial vehicle (UAV) crowdsensing (UCS) is an emerging data collection paradigm to provide reliable and high quality urban sensing services, with age-of-information (AoI) requirement to measure data freshness in real-time applications. In this paper, we explicitly consider the case to ensure that the attained AoI always stay within a specific threshold. The goal is to maximize the total amount of collected data from diverse Point-of-Interests (PoIs) while minimizing AoI and AoI threshold violation ratio under limited energy supplement. To this end, we propose a decentralized multi-agent deep reinforcement learning framework called "DRL-UCS(<inline-formula> <tex-math notation="LaTeX">\text{AoI}_{th}</tex-math> </inline-formula>)" for multi-UAV trajectory planning, which consists of a novel transformer-enhanced distributed architecture and an adaptive intrinsic reward mechanism for spatial cooperation and exploration. Extensive results and trajectory visualization on two real-world datasets in Beijing and San Francisco show that, DRL-UCS(<inline-formula> <tex-math notation="LaTeX">\text{AoI}_{th}</tex-math> </inline-formula>) consistently outperforms all nine baselines when varying the number of UAVs, AoI threshold and generated data amount in a timeslot.]]></description><subject>AoI</subject><subject>Autonomous aerial vehicles</subject><subject>Crowdsensing</subject><subject>Data collection</subject><subject>Data integrity</subject><subject>Deep learning</subject><subject>multi-agent deep reinforcement learning</subject><subject>Multiagent systems</subject><subject>Optimization</subject><subject>Sensors</subject><subject>Trajectory</subject><subject>Trajectory planning</subject><subject>transformer</subject><subject>Transformers</subject><subject>UAV crowdsensing</subject><subject>Unmanned aerial vehicles</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMoOKc_QPAi4HVnPmzSXpY5dbApSKeXoR-nW0aXzKRl7N-bsl1ICCecvE8OeRC6p2RCKUmf8o9ZPmGE8QlnSUolu0AjGsdJxGIhLsOZCB4JkbJrdOP9lhDKCRMjdJgZ3ztt1jjfOPAb29Y4s3PcWIdX2XeUea99BzVe2lK3gKfOHmoPxg9IecTLvu10lK3BdPgFYI-_QJsAV7AbWgsonBmiP7rb4NwVxofLHbhbdNUUrYe7cx2j1essn75Hi8-3-TRbRBV7Fl0E4ScNF7VMSiITTgtRxbwUopKJ4KGfkrKmlIXCZMlYJeOUBx8kEBIAJB-jx9O7e2d_e_Cd2tremTBSsTQswlPKQ4qeUpWz3jto1N7pXeGOihI1-FWDXzX4VWe_gXk4MToM-penSdiM_wGNKHZ5</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Wang, Hao</creator><creator>Liu, Chi Harold</creator><creator>Yang, Haoming</creator><creator>Wang, Guoren</creator><creator>Leung, Kin K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0252-329X</orcidid><orcidid>https://orcid.org/0009-0004-0199-0488</orcidid><orcidid>https://orcid.org/0000-0002-3860-6257</orcidid><orcidid>https://orcid.org/0000-0002-0181-8379</orcidid></search><sort><creationdate>20240201</creationdate><title>Ensuring Threshold AoI for UAV-Assisted Mobile Crowdsensing by Multi-Agent Deep Reinforcement Learning With Transformer</title><author>Wang, Hao ; Liu, Chi Harold ; Yang, Haoming ; Wang, Guoren ; Leung, Kin K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-e172f36d78b07831a6c53b66c786336d90bd11290b27b22c759311006d77eee73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AoI</topic><topic>Autonomous aerial vehicles</topic><topic>Crowdsensing</topic><topic>Data collection</topic><topic>Data integrity</topic><topic>Deep learning</topic><topic>multi-agent deep reinforcement learning</topic><topic>Multiagent systems</topic><topic>Optimization</topic><topic>Sensors</topic><topic>Trajectory</topic><topic>Trajectory planning</topic><topic>transformer</topic><topic>Transformers</topic><topic>UAV crowdsensing</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Liu, Chi Harold</creatorcontrib><creatorcontrib>Yang, Haoming</creatorcontrib><creatorcontrib>Wang, Guoren</creatorcontrib><creatorcontrib>Leung, Kin K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hao</au><au>Liu, Chi Harold</au><au>Yang, Haoming</au><au>Wang, Guoren</au><au>Leung, Kin K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensuring Threshold AoI for UAV-Assisted Mobile Crowdsensing by Multi-Agent Deep Reinforcement Learning With Transformer</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>32</volume><issue>1</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract><![CDATA[Unmanned aerial vehicle (UAV) crowdsensing (UCS) is an emerging data collection paradigm to provide reliable and high quality urban sensing services, with age-of-information (AoI) requirement to measure data freshness in real-time applications. In this paper, we explicitly consider the case to ensure that the attained AoI always stay within a specific threshold. The goal is to maximize the total amount of collected data from diverse Point-of-Interests (PoIs) while minimizing AoI and AoI threshold violation ratio under limited energy supplement. To this end, we propose a decentralized multi-agent deep reinforcement learning framework called "DRL-UCS(<inline-formula> <tex-math notation="LaTeX">\text{AoI}_{th}</tex-math> </inline-formula>)" for multi-UAV trajectory planning, which consists of a novel transformer-enhanced distributed architecture and an adaptive intrinsic reward mechanism for spatial cooperation and exploration. Extensive results and trajectory visualization on two real-world datasets in Beijing and San Francisco show that, DRL-UCS(<inline-formula> <tex-math notation="LaTeX">\text{AoI}_{th}</tex-math> </inline-formula>) consistently outperforms all nine baselines when varying the number of UAVs, AoI threshold and generated data amount in a timeslot.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2023.3289172</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0252-329X</orcidid><orcidid>https://orcid.org/0009-0004-0199-0488</orcidid><orcidid>https://orcid.org/0000-0002-3860-6257</orcidid><orcidid>https://orcid.org/0000-0002-0181-8379</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1063-6692
ispartof IEEE/ACM transactions on networking, 2024-02, Vol.32 (1), p.1-16
issn 1063-6692
1558-2566
language eng
recordid cdi_crossref_primary_10_1109_TNET_2023_3289172
source IEEE Electronic Library (IEL) Journals; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
subjects AoI
Autonomous aerial vehicles
Crowdsensing
Data collection
Data integrity
Deep learning
multi-agent deep reinforcement learning
Multiagent systems
Optimization
Sensors
Trajectory
Trajectory planning
transformer
Transformers
UAV crowdsensing
Unmanned aerial vehicles
title Ensuring Threshold AoI for UAV-Assisted Mobile Crowdsensing by Multi-Agent Deep Reinforcement Learning With Transformer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A15%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensuring%20Threshold%20AoI%20for%20UAV-Assisted%20Mobile%20Crowdsensing%20by%20Multi-Agent%20Deep%20Reinforcement%20Learning%20With%20Transformer&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Wang,%20Hao&rft.date=2024-02-01&rft.volume=32&rft.issue=1&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2023.3289172&rft_dat=%3Cproquest_cross%3E2929203913%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-e172f36d78b07831a6c53b66c786336d90bd11290b27b22c759311006d77eee73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2929203913&rft_id=info:pmid/&rft_ieee_id=10181012&rfr_iscdi=true