Loading…
Ensuring Threshold AoI for UAV-Assisted Mobile Crowdsensing by Multi-Agent Deep Reinforcement Learning With Transformer
Unmanned aerial vehicle (UAV) crowdsensing (UCS) is an emerging data collection paradigm to provide reliable and high quality urban sensing services, with age-of-information (AoI) requirement to measure data freshness in real-time applications. In this paper, we explicitly consider the case to ensur...
Saved in:
Published in: | IEEE/ACM transactions on networking 2024-02, Vol.32 (1), p.1-16 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c246t-e172f36d78b07831a6c53b66c786336d90bd11290b27b22c759311006d77eee73 |
container_end_page | 16 |
container_issue | 1 |
container_start_page | 1 |
container_title | IEEE/ACM transactions on networking |
container_volume | 32 |
creator | Wang, Hao Liu, Chi Harold Yang, Haoming Wang, Guoren Leung, Kin K. |
description | Unmanned aerial vehicle (UAV) crowdsensing (UCS) is an emerging data collection paradigm to provide reliable and high quality urban sensing services, with age-of-information (AoI) requirement to measure data freshness in real-time applications. In this paper, we explicitly consider the case to ensure that the attained AoI always stay within a specific threshold. The goal is to maximize the total amount of collected data from diverse Point-of-Interests (PoIs) while minimizing AoI and AoI threshold violation ratio under limited energy supplement. To this end, we propose a decentralized multi-agent deep reinforcement learning framework called "DRL-UCS( \text{AoI}_{th} )" for multi-UAV trajectory planning, which consists of a novel transformer-enhanced distributed architecture and an adaptive intrinsic reward mechanism for spatial cooperation and exploration. Extensive results and trajectory visualization on two real-world datasets in Beijing and San Francisco show that, DRL-UCS( \text{AoI}_{th} ) consistently outperforms all nine baselines when varying the number of UAVs, AoI threshold and generated data amount in a timeslot. |
doi_str_mv | 10.1109/TNET.2023.3289172 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNET_2023_3289172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10181012</ieee_id><sourcerecordid>2929203913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-e172f36d78b07831a6c53b66c786336d90bd11290b27b22c759311006d77eee73</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKc_QPAi4HVnPmzSXpY5dbApSKeXoR-nW0aXzKRl7N-bsl1ICCecvE8OeRC6p2RCKUmf8o9ZPmGE8QlnSUolu0AjGsdJxGIhLsOZCB4JkbJrdOP9lhDKCRMjdJgZ3ztt1jjfOPAb29Y4s3PcWIdX2XeUea99BzVe2lK3gKfOHmoPxg9IecTLvu10lK3BdPgFYI-_QJsAV7AbWgsonBmiP7rb4NwVxofLHbhbdNUUrYe7cx2j1essn75Hi8-3-TRbRBV7Fl0E4ScNF7VMSiITTgtRxbwUopKJ4KGfkrKmlIXCZMlYJeOUBx8kEBIAJB-jx9O7e2d_e_Cd2tremTBSsTQswlPKQ4qeUpWz3jto1N7pXeGOihI1-FWDXzX4VWe_gXk4MToM-penSdiM_wGNKHZ5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929203913</pqid></control><display><type>article</type><title>Ensuring Threshold AoI for UAV-Assisted Mobile Crowdsensing by Multi-Agent Deep Reinforcement Learning With Transformer</title><source>IEEE Electronic Library (IEL) Journals</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Wang, Hao ; Liu, Chi Harold ; Yang, Haoming ; Wang, Guoren ; Leung, Kin K.</creator><creatorcontrib>Wang, Hao ; Liu, Chi Harold ; Yang, Haoming ; Wang, Guoren ; Leung, Kin K.</creatorcontrib><description><![CDATA[Unmanned aerial vehicle (UAV) crowdsensing (UCS) is an emerging data collection paradigm to provide reliable and high quality urban sensing services, with age-of-information (AoI) requirement to measure data freshness in real-time applications. In this paper, we explicitly consider the case to ensure that the attained AoI always stay within a specific threshold. The goal is to maximize the total amount of collected data from diverse Point-of-Interests (PoIs) while minimizing AoI and AoI threshold violation ratio under limited energy supplement. To this end, we propose a decentralized multi-agent deep reinforcement learning framework called "DRL-UCS(<inline-formula> <tex-math notation="LaTeX">\text{AoI}_{th}</tex-math> </inline-formula>)" for multi-UAV trajectory planning, which consists of a novel transformer-enhanced distributed architecture and an adaptive intrinsic reward mechanism for spatial cooperation and exploration. Extensive results and trajectory visualization on two real-world datasets in Beijing and San Francisco show that, DRL-UCS(<inline-formula> <tex-math notation="LaTeX">\text{AoI}_{th}</tex-math> </inline-formula>) consistently outperforms all nine baselines when varying the number of UAVs, AoI threshold and generated data amount in a timeslot.]]></description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2023.3289172</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>AoI ; Autonomous aerial vehicles ; Crowdsensing ; Data collection ; Data integrity ; Deep learning ; multi-agent deep reinforcement learning ; Multiagent systems ; Optimization ; Sensors ; Trajectory ; Trajectory planning ; transformer ; Transformers ; UAV crowdsensing ; Unmanned aerial vehicles</subject><ispartof>IEEE/ACM transactions on networking, 2024-02, Vol.32 (1), p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-e172f36d78b07831a6c53b66c786336d90bd11290b27b22c759311006d77eee73</cites><orcidid>0000-0002-0252-329X ; 0009-0004-0199-0488 ; 0000-0002-3860-6257 ; 0000-0002-0181-8379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10181012$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Liu, Chi Harold</creatorcontrib><creatorcontrib>Yang, Haoming</creatorcontrib><creatorcontrib>Wang, Guoren</creatorcontrib><creatorcontrib>Leung, Kin K.</creatorcontrib><title>Ensuring Threshold AoI for UAV-Assisted Mobile Crowdsensing by Multi-Agent Deep Reinforcement Learning With Transformer</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description><![CDATA[Unmanned aerial vehicle (UAV) crowdsensing (UCS) is an emerging data collection paradigm to provide reliable and high quality urban sensing services, with age-of-information (AoI) requirement to measure data freshness in real-time applications. In this paper, we explicitly consider the case to ensure that the attained AoI always stay within a specific threshold. The goal is to maximize the total amount of collected data from diverse Point-of-Interests (PoIs) while minimizing AoI and AoI threshold violation ratio under limited energy supplement. To this end, we propose a decentralized multi-agent deep reinforcement learning framework called "DRL-UCS(<inline-formula> <tex-math notation="LaTeX">\text{AoI}_{th}</tex-math> </inline-formula>)" for multi-UAV trajectory planning, which consists of a novel transformer-enhanced distributed architecture and an adaptive intrinsic reward mechanism for spatial cooperation and exploration. Extensive results and trajectory visualization on two real-world datasets in Beijing and San Francisco show that, DRL-UCS(<inline-formula> <tex-math notation="LaTeX">\text{AoI}_{th}</tex-math> </inline-formula>) consistently outperforms all nine baselines when varying the number of UAVs, AoI threshold and generated data amount in a timeslot.]]></description><subject>AoI</subject><subject>Autonomous aerial vehicles</subject><subject>Crowdsensing</subject><subject>Data collection</subject><subject>Data integrity</subject><subject>Deep learning</subject><subject>multi-agent deep reinforcement learning</subject><subject>Multiagent systems</subject><subject>Optimization</subject><subject>Sensors</subject><subject>Trajectory</subject><subject>Trajectory planning</subject><subject>transformer</subject><subject>Transformers</subject><subject>UAV crowdsensing</subject><subject>Unmanned aerial vehicles</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMoOKc_QPAi4HVnPmzSXpY5dbApSKeXoR-nW0aXzKRl7N-bsl1ICCecvE8OeRC6p2RCKUmf8o9ZPmGE8QlnSUolu0AjGsdJxGIhLsOZCB4JkbJrdOP9lhDKCRMjdJgZ3ztt1jjfOPAb29Y4s3PcWIdX2XeUea99BzVe2lK3gKfOHmoPxg9IecTLvu10lK3BdPgFYI-_QJsAV7AbWgsonBmiP7rb4NwVxofLHbhbdNUUrYe7cx2j1essn75Hi8-3-TRbRBV7Fl0E4ScNF7VMSiITTgtRxbwUopKJ4KGfkrKmlIXCZMlYJeOUBx8kEBIAJB-jx9O7e2d_e_Cd2tremTBSsTQswlPKQ4qeUpWz3jto1N7pXeGOihI1-FWDXzX4VWe_gXk4MToM-penSdiM_wGNKHZ5</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Wang, Hao</creator><creator>Liu, Chi Harold</creator><creator>Yang, Haoming</creator><creator>Wang, Guoren</creator><creator>Leung, Kin K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0252-329X</orcidid><orcidid>https://orcid.org/0009-0004-0199-0488</orcidid><orcidid>https://orcid.org/0000-0002-3860-6257</orcidid><orcidid>https://orcid.org/0000-0002-0181-8379</orcidid></search><sort><creationdate>20240201</creationdate><title>Ensuring Threshold AoI for UAV-Assisted Mobile Crowdsensing by Multi-Agent Deep Reinforcement Learning With Transformer</title><author>Wang, Hao ; Liu, Chi Harold ; Yang, Haoming ; Wang, Guoren ; Leung, Kin K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-e172f36d78b07831a6c53b66c786336d90bd11290b27b22c759311006d77eee73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AoI</topic><topic>Autonomous aerial vehicles</topic><topic>Crowdsensing</topic><topic>Data collection</topic><topic>Data integrity</topic><topic>Deep learning</topic><topic>multi-agent deep reinforcement learning</topic><topic>Multiagent systems</topic><topic>Optimization</topic><topic>Sensors</topic><topic>Trajectory</topic><topic>Trajectory planning</topic><topic>transformer</topic><topic>Transformers</topic><topic>UAV crowdsensing</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Liu, Chi Harold</creatorcontrib><creatorcontrib>Yang, Haoming</creatorcontrib><creatorcontrib>Wang, Guoren</creatorcontrib><creatorcontrib>Leung, Kin K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hao</au><au>Liu, Chi Harold</au><au>Yang, Haoming</au><au>Wang, Guoren</au><au>Leung, Kin K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensuring Threshold AoI for UAV-Assisted Mobile Crowdsensing by Multi-Agent Deep Reinforcement Learning With Transformer</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>32</volume><issue>1</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract><![CDATA[Unmanned aerial vehicle (UAV) crowdsensing (UCS) is an emerging data collection paradigm to provide reliable and high quality urban sensing services, with age-of-information (AoI) requirement to measure data freshness in real-time applications. In this paper, we explicitly consider the case to ensure that the attained AoI always stay within a specific threshold. The goal is to maximize the total amount of collected data from diverse Point-of-Interests (PoIs) while minimizing AoI and AoI threshold violation ratio under limited energy supplement. To this end, we propose a decentralized multi-agent deep reinforcement learning framework called "DRL-UCS(<inline-formula> <tex-math notation="LaTeX">\text{AoI}_{th}</tex-math> </inline-formula>)" for multi-UAV trajectory planning, which consists of a novel transformer-enhanced distributed architecture and an adaptive intrinsic reward mechanism for spatial cooperation and exploration. Extensive results and trajectory visualization on two real-world datasets in Beijing and San Francisco show that, DRL-UCS(<inline-formula> <tex-math notation="LaTeX">\text{AoI}_{th}</tex-math> </inline-formula>) consistently outperforms all nine baselines when varying the number of UAVs, AoI threshold and generated data amount in a timeslot.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2023.3289172</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0252-329X</orcidid><orcidid>https://orcid.org/0009-0004-0199-0488</orcidid><orcidid>https://orcid.org/0000-0002-3860-6257</orcidid><orcidid>https://orcid.org/0000-0002-0181-8379</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-6692 |
ispartof | IEEE/ACM transactions on networking, 2024-02, Vol.32 (1), p.1-16 |
issn | 1063-6692 1558-2566 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNET_2023_3289172 |
source | IEEE Electronic Library (IEL) Journals; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
subjects | AoI Autonomous aerial vehicles Crowdsensing Data collection Data integrity Deep learning multi-agent deep reinforcement learning Multiagent systems Optimization Sensors Trajectory Trajectory planning transformer Transformers UAV crowdsensing Unmanned aerial vehicles |
title | Ensuring Threshold AoI for UAV-Assisted Mobile Crowdsensing by Multi-Agent Deep Reinforcement Learning With Transformer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A15%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensuring%20Threshold%20AoI%20for%20UAV-Assisted%20Mobile%20Crowdsensing%20by%20Multi-Agent%20Deep%20Reinforcement%20Learning%20With%20Transformer&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Wang,%20Hao&rft.date=2024-02-01&rft.volume=32&rft.issue=1&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2023.3289172&rft_dat=%3Cproquest_cross%3E2929203913%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-e172f36d78b07831a6c53b66c786336d90bd11290b27b22c759311006d77eee73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2929203913&rft_id=info:pmid/&rft_ieee_id=10181012&rfr_iscdi=true |