Loading…
Parallel Placement of Virtualized Network Functions via Federated Deep Reinforcement Learning
Network Function Virtualization (NFV) introduces a new network architecture that offers different network services flexibly and dynamically in the form of Service Function Chains (SFCs), which refer to a set of Virtualization Network Functions (VNFs) chained in a specific order. However, the service...
Saved in:
Published in: | IEEE/ACM transactions on networking 2024-08, Vol.32 (4), p.2936-2949 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c218t-f7db39c52b9edd5d293217b9cffd87804e8f57b2532b68dfc5c9e84bec5baed13 |
container_end_page | 2949 |
container_issue | 4 |
container_start_page | 2936 |
container_title | IEEE/ACM transactions on networking |
container_volume | 32 |
creator | Huang, Haojun Tian, Jialin Min, Geyong Yin, Hao Zeng, Cheng Zhao, Yangming Wu, Dapeng Oliver |
description | Network Function Virtualization (NFV) introduces a new network architecture that offers different network services flexibly and dynamically in the form of Service Function Chains (SFCs), which refer to a set of Virtualization Network Functions (VNFs) chained in a specific order. However, the service latency often increases linearly with the length of SFCs due to the sequential execution of VNFs, resulting in sub-optimal performance for most delay-sensitive applications. In this paper, a novel Parallel VNF Placement (PVFP) approach is proposed for real-world networks via Federated Deep Reinforcement Learning (FDRL). PVFP has three remarkable characteristics distinguishing from previous work: 1) PVFP designs a specific parallel principle, with three parallelism identification rules, to reasonably decide partial VNF parallelism; 2) PVFP considers SFC partition in multi-domains built on their remaining resources and potential parallel VNFs to ensure that VNFs can be reasonably distributed for resource balancing among domains; 3) FDRL-based framework of parallel VNF placement is designed to train a global intelligent model, with time-variant local autonomy explorations, for cross-domain SFC deployment, avoiding data sharing among domains. Simulation results in different scenarios demonstrate that PVFP can significantly reduce the end-to-end latency of SFCs at the medium resource expenditures to place VNFs in multiple administrative domains, compared with the state-of-the-art mechanisms. |
doi_str_mv | 10.1109/TNET.2024.3366950 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNET_2024_3366950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10453466</ieee_id><sourcerecordid>10_1109_TNET_2024_3366950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-f7db39c52b9edd5d293217b9cffd87804e8f57b2532b68dfc5c9e84bec5baed13</originalsourceid><addsrcrecordid>eNpNkMtKw0AYhQdRsFYfQHAxL5A6l8xkZim1qUKpRao7CXP5R0bTpExSRZ_elHbh6hw4l8WH0DUlE0qJvl0vZ-sJIyyfcC6lFuQEjagQKmNCytPBE8mzIWDn6KLrPgihnDA5Qm8rk0xdQ41XtXGwgabHbcCvMfU7U8df8HgJ_XebPnG5a1wf26bDX9HgEjwk0w_5PcAWP0NsQpuODwswqYnN-yU6C6bu4OqoY_RSztbTh2zxNH-c3i0yx6jqs1B4y7UTzGrwXnimOaOF1S4ErwpFclBBFJYJzqxUPjjhNKjcghPWgKd8jOjh16W26xKEapvixqSfipJqz6fa86n2fKojn2Fzc9hEAPjXzwXPpeR_ELdkQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parallel Placement of Virtualized Network Functions via Federated Deep Reinforcement Learning</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><source>IEEE Xplore (Online service)</source><creator>Huang, Haojun ; Tian, Jialin ; Min, Geyong ; Yin, Hao ; Zeng, Cheng ; Zhao, Yangming ; Wu, Dapeng Oliver</creator><creatorcontrib>Huang, Haojun ; Tian, Jialin ; Min, Geyong ; Yin, Hao ; Zeng, Cheng ; Zhao, Yangming ; Wu, Dapeng Oliver</creatorcontrib><description>Network Function Virtualization (NFV) introduces a new network architecture that offers different network services flexibly and dynamically in the form of Service Function Chains (SFCs), which refer to a set of Virtualization Network Functions (VNFs) chained in a specific order. However, the service latency often increases linearly with the length of SFCs due to the sequential execution of VNFs, resulting in sub-optimal performance for most delay-sensitive applications. In this paper, a novel Parallel VNF Placement (PVFP) approach is proposed for real-world networks via Federated Deep Reinforcement Learning (FDRL). PVFP has three remarkable characteristics distinguishing from previous work: 1) PVFP designs a specific parallel principle, with three parallelism identification rules, to reasonably decide partial VNF parallelism; 2) PVFP considers SFC partition in multi-domains built on their remaining resources and potential parallel VNFs to ensure that VNFs can be reasonably distributed for resource balancing among domains; 3) FDRL-based framework of parallel VNF placement is designed to train a global intelligent model, with time-variant local autonomy explorations, for cross-domain SFC deployment, avoiding data sharing among domains. Simulation results in different scenarios demonstrate that PVFP can significantly reduce the end-to-end latency of SFCs at the medium resource expenditures to place VNFs in multiple administrative domains, compared with the state-of-the-art mechanisms.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2024.3366950</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convergence ; Costs ; Deep reinforcement learning ; federated learning ; Hidden Markov models ; multiple domains ; Network function virtualization ; parallel placement ; Parallel processing ; Servers ; Training</subject><ispartof>IEEE/ACM transactions on networking, 2024-08, Vol.32 (4), p.2936-2949</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-f7db39c52b9edd5d293217b9cffd87804e8f57b2532b68dfc5c9e84bec5baed13</cites><orcidid>0000-0003-1395-7314 ; 0000-0002-7829-7196 ; 0000-0003-1755-0183 ; 0000-0002-4154-8529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10453466$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Huang, Haojun</creatorcontrib><creatorcontrib>Tian, Jialin</creatorcontrib><creatorcontrib>Min, Geyong</creatorcontrib><creatorcontrib>Yin, Hao</creatorcontrib><creatorcontrib>Zeng, Cheng</creatorcontrib><creatorcontrib>Zhao, Yangming</creatorcontrib><creatorcontrib>Wu, Dapeng Oliver</creatorcontrib><title>Parallel Placement of Virtualized Network Functions via Federated Deep Reinforcement Learning</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>Network Function Virtualization (NFV) introduces a new network architecture that offers different network services flexibly and dynamically in the form of Service Function Chains (SFCs), which refer to a set of Virtualization Network Functions (VNFs) chained in a specific order. However, the service latency often increases linearly with the length of SFCs due to the sequential execution of VNFs, resulting in sub-optimal performance for most delay-sensitive applications. In this paper, a novel Parallel VNF Placement (PVFP) approach is proposed for real-world networks via Federated Deep Reinforcement Learning (FDRL). PVFP has three remarkable characteristics distinguishing from previous work: 1) PVFP designs a specific parallel principle, with three parallelism identification rules, to reasonably decide partial VNF parallelism; 2) PVFP considers SFC partition in multi-domains built on their remaining resources and potential parallel VNFs to ensure that VNFs can be reasonably distributed for resource balancing among domains; 3) FDRL-based framework of parallel VNF placement is designed to train a global intelligent model, with time-variant local autonomy explorations, for cross-domain SFC deployment, avoiding data sharing among domains. Simulation results in different scenarios demonstrate that PVFP can significantly reduce the end-to-end latency of SFCs at the medium resource expenditures to place VNFs in multiple administrative domains, compared with the state-of-the-art mechanisms.</description><subject>Convergence</subject><subject>Costs</subject><subject>Deep reinforcement learning</subject><subject>federated learning</subject><subject>Hidden Markov models</subject><subject>multiple domains</subject><subject>Network function virtualization</subject><subject>parallel placement</subject><subject>Parallel processing</subject><subject>Servers</subject><subject>Training</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtKw0AYhQdRsFYfQHAxL5A6l8xkZim1qUKpRao7CXP5R0bTpExSRZ_elHbh6hw4l8WH0DUlE0qJvl0vZ-sJIyyfcC6lFuQEjagQKmNCytPBE8mzIWDn6KLrPgihnDA5Qm8rk0xdQ41XtXGwgabHbcCvMfU7U8df8HgJ_XebPnG5a1wf26bDX9HgEjwk0w_5PcAWP0NsQpuODwswqYnN-yU6C6bu4OqoY_RSztbTh2zxNH-c3i0yx6jqs1B4y7UTzGrwXnimOaOF1S4ErwpFclBBFJYJzqxUPjjhNKjcghPWgKd8jOjh16W26xKEapvixqSfipJqz6fa86n2fKojn2Fzc9hEAPjXzwXPpeR_ELdkQg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Huang, Haojun</creator><creator>Tian, Jialin</creator><creator>Min, Geyong</creator><creator>Yin, Hao</creator><creator>Zeng, Cheng</creator><creator>Zhao, Yangming</creator><creator>Wu, Dapeng Oliver</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1395-7314</orcidid><orcidid>https://orcid.org/0000-0002-7829-7196</orcidid><orcidid>https://orcid.org/0000-0003-1755-0183</orcidid><orcidid>https://orcid.org/0000-0002-4154-8529</orcidid></search><sort><creationdate>20240801</creationdate><title>Parallel Placement of Virtualized Network Functions via Federated Deep Reinforcement Learning</title><author>Huang, Haojun ; Tian, Jialin ; Min, Geyong ; Yin, Hao ; Zeng, Cheng ; Zhao, Yangming ; Wu, Dapeng Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-f7db39c52b9edd5d293217b9cffd87804e8f57b2532b68dfc5c9e84bec5baed13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convergence</topic><topic>Costs</topic><topic>Deep reinforcement learning</topic><topic>federated learning</topic><topic>Hidden Markov models</topic><topic>multiple domains</topic><topic>Network function virtualization</topic><topic>parallel placement</topic><topic>Parallel processing</topic><topic>Servers</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Haojun</creatorcontrib><creatorcontrib>Tian, Jialin</creatorcontrib><creatorcontrib>Min, Geyong</creatorcontrib><creatorcontrib>Yin, Hao</creatorcontrib><creatorcontrib>Zeng, Cheng</creatorcontrib><creatorcontrib>Zhao, Yangming</creatorcontrib><creatorcontrib>Wu, Dapeng Oliver</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Haojun</au><au>Tian, Jialin</au><au>Min, Geyong</au><au>Yin, Hao</au><au>Zeng, Cheng</au><au>Zhao, Yangming</au><au>Wu, Dapeng Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel Placement of Virtualized Network Functions via Federated Deep Reinforcement Learning</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>32</volume><issue>4</issue><spage>2936</spage><epage>2949</epage><pages>2936-2949</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>Network Function Virtualization (NFV) introduces a new network architecture that offers different network services flexibly and dynamically in the form of Service Function Chains (SFCs), which refer to a set of Virtualization Network Functions (VNFs) chained in a specific order. However, the service latency often increases linearly with the length of SFCs due to the sequential execution of VNFs, resulting in sub-optimal performance for most delay-sensitive applications. In this paper, a novel Parallel VNF Placement (PVFP) approach is proposed for real-world networks via Federated Deep Reinforcement Learning (FDRL). PVFP has three remarkable characteristics distinguishing from previous work: 1) PVFP designs a specific parallel principle, with three parallelism identification rules, to reasonably decide partial VNF parallelism; 2) PVFP considers SFC partition in multi-domains built on their remaining resources and potential parallel VNFs to ensure that VNFs can be reasonably distributed for resource balancing among domains; 3) FDRL-based framework of parallel VNF placement is designed to train a global intelligent model, with time-variant local autonomy explorations, for cross-domain SFC deployment, avoiding data sharing among domains. Simulation results in different scenarios demonstrate that PVFP can significantly reduce the end-to-end latency of SFCs at the medium resource expenditures to place VNFs in multiple administrative domains, compared with the state-of-the-art mechanisms.</abstract><pub>IEEE</pub><doi>10.1109/TNET.2024.3366950</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1395-7314</orcidid><orcidid>https://orcid.org/0000-0002-7829-7196</orcidid><orcidid>https://orcid.org/0000-0003-1755-0183</orcidid><orcidid>https://orcid.org/0000-0002-4154-8529</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-6692 |
ispartof | IEEE/ACM transactions on networking, 2024-08, Vol.32 (4), p.2936-2949 |
issn | 1063-6692 1558-2566 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNET_2024_3366950 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list); IEEE Xplore (Online service) |
subjects | Convergence Costs Deep reinforcement learning federated learning Hidden Markov models multiple domains Network function virtualization parallel placement Parallel processing Servers Training |
title | Parallel Placement of Virtualized Network Functions via Federated Deep Reinforcement Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A05%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20Placement%20of%20Virtualized%20Network%20Functions%20via%20Federated%20Deep%20Reinforcement%20Learning&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Huang,%20Haojun&rft.date=2024-08-01&rft.volume=32&rft.issue=4&rft.spage=2936&rft.epage=2949&rft.pages=2936-2949&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2024.3366950&rft_dat=%3Ccrossref_ieee_%3E10_1109_TNET_2024_3366950%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c218t-f7db39c52b9edd5d293217b9cffd87804e8f57b2532b68dfc5c9e84bec5baed13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10453466&rfr_iscdi=true |