Loading…

Parallel Placement of Virtualized Network Functions via Federated Deep Reinforcement Learning

Network Function Virtualization (NFV) introduces a new network architecture that offers different network services flexibly and dynamically in the form of Service Function Chains (SFCs), which refer to a set of Virtualization Network Functions (VNFs) chained in a specific order. However, the service...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on networking 2024-08, Vol.32 (4), p.2936-2949
Main Authors: Huang, Haojun, Tian, Jialin, Min, Geyong, Yin, Hao, Zeng, Cheng, Zhao, Yangming, Wu, Dapeng Oliver
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c218t-f7db39c52b9edd5d293217b9cffd87804e8f57b2532b68dfc5c9e84bec5baed13
container_end_page 2949
container_issue 4
container_start_page 2936
container_title IEEE/ACM transactions on networking
container_volume 32
creator Huang, Haojun
Tian, Jialin
Min, Geyong
Yin, Hao
Zeng, Cheng
Zhao, Yangming
Wu, Dapeng Oliver
description Network Function Virtualization (NFV) introduces a new network architecture that offers different network services flexibly and dynamically in the form of Service Function Chains (SFCs), which refer to a set of Virtualization Network Functions (VNFs) chained in a specific order. However, the service latency often increases linearly with the length of SFCs due to the sequential execution of VNFs, resulting in sub-optimal performance for most delay-sensitive applications. In this paper, a novel Parallel VNF Placement (PVFP) approach is proposed for real-world networks via Federated Deep Reinforcement Learning (FDRL). PVFP has three remarkable characteristics distinguishing from previous work: 1) PVFP designs a specific parallel principle, with three parallelism identification rules, to reasonably decide partial VNF parallelism; 2) PVFP considers SFC partition in multi-domains built on their remaining resources and potential parallel VNFs to ensure that VNFs can be reasonably distributed for resource balancing among domains; 3) FDRL-based framework of parallel VNF placement is designed to train a global intelligent model, with time-variant local autonomy explorations, for cross-domain SFC deployment, avoiding data sharing among domains. Simulation results in different scenarios demonstrate that PVFP can significantly reduce the end-to-end latency of SFCs at the medium resource expenditures to place VNFs in multiple administrative domains, compared with the state-of-the-art mechanisms.
doi_str_mv 10.1109/TNET.2024.3366950
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNET_2024_3366950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10453466</ieee_id><sourcerecordid>10_1109_TNET_2024_3366950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-f7db39c52b9edd5d293217b9cffd87804e8f57b2532b68dfc5c9e84bec5baed13</originalsourceid><addsrcrecordid>eNpNkMtKw0AYhQdRsFYfQHAxL5A6l8xkZim1qUKpRao7CXP5R0bTpExSRZ_elHbh6hw4l8WH0DUlE0qJvl0vZ-sJIyyfcC6lFuQEjagQKmNCytPBE8mzIWDn6KLrPgihnDA5Qm8rk0xdQ41XtXGwgabHbcCvMfU7U8df8HgJ_XebPnG5a1wf26bDX9HgEjwk0w_5PcAWP0NsQpuODwswqYnN-yU6C6bu4OqoY_RSztbTh2zxNH-c3i0yx6jqs1B4y7UTzGrwXnimOaOF1S4ErwpFclBBFJYJzqxUPjjhNKjcghPWgKd8jOjh16W26xKEapvixqSfipJqz6fa86n2fKojn2Fzc9hEAPjXzwXPpeR_ELdkQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parallel Placement of Virtualized Network Functions via Federated Deep Reinforcement Learning</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><source>IEEE Xplore (Online service)</source><creator>Huang, Haojun ; Tian, Jialin ; Min, Geyong ; Yin, Hao ; Zeng, Cheng ; Zhao, Yangming ; Wu, Dapeng Oliver</creator><creatorcontrib>Huang, Haojun ; Tian, Jialin ; Min, Geyong ; Yin, Hao ; Zeng, Cheng ; Zhao, Yangming ; Wu, Dapeng Oliver</creatorcontrib><description>Network Function Virtualization (NFV) introduces a new network architecture that offers different network services flexibly and dynamically in the form of Service Function Chains (SFCs), which refer to a set of Virtualization Network Functions (VNFs) chained in a specific order. However, the service latency often increases linearly with the length of SFCs due to the sequential execution of VNFs, resulting in sub-optimal performance for most delay-sensitive applications. In this paper, a novel Parallel VNF Placement (PVFP) approach is proposed for real-world networks via Federated Deep Reinforcement Learning (FDRL). PVFP has three remarkable characteristics distinguishing from previous work: 1) PVFP designs a specific parallel principle, with three parallelism identification rules, to reasonably decide partial VNF parallelism; 2) PVFP considers SFC partition in multi-domains built on their remaining resources and potential parallel VNFs to ensure that VNFs can be reasonably distributed for resource balancing among domains; 3) FDRL-based framework of parallel VNF placement is designed to train a global intelligent model, with time-variant local autonomy explorations, for cross-domain SFC deployment, avoiding data sharing among domains. Simulation results in different scenarios demonstrate that PVFP can significantly reduce the end-to-end latency of SFCs at the medium resource expenditures to place VNFs in multiple administrative domains, compared with the state-of-the-art mechanisms.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2024.3366950</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convergence ; Costs ; Deep reinforcement learning ; federated learning ; Hidden Markov models ; multiple domains ; Network function virtualization ; parallel placement ; Parallel processing ; Servers ; Training</subject><ispartof>IEEE/ACM transactions on networking, 2024-08, Vol.32 (4), p.2936-2949</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-f7db39c52b9edd5d293217b9cffd87804e8f57b2532b68dfc5c9e84bec5baed13</cites><orcidid>0000-0003-1395-7314 ; 0000-0002-7829-7196 ; 0000-0003-1755-0183 ; 0000-0002-4154-8529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10453466$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Huang, Haojun</creatorcontrib><creatorcontrib>Tian, Jialin</creatorcontrib><creatorcontrib>Min, Geyong</creatorcontrib><creatorcontrib>Yin, Hao</creatorcontrib><creatorcontrib>Zeng, Cheng</creatorcontrib><creatorcontrib>Zhao, Yangming</creatorcontrib><creatorcontrib>Wu, Dapeng Oliver</creatorcontrib><title>Parallel Placement of Virtualized Network Functions via Federated Deep Reinforcement Learning</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>Network Function Virtualization (NFV) introduces a new network architecture that offers different network services flexibly and dynamically in the form of Service Function Chains (SFCs), which refer to a set of Virtualization Network Functions (VNFs) chained in a specific order. However, the service latency often increases linearly with the length of SFCs due to the sequential execution of VNFs, resulting in sub-optimal performance for most delay-sensitive applications. In this paper, a novel Parallel VNF Placement (PVFP) approach is proposed for real-world networks via Federated Deep Reinforcement Learning (FDRL). PVFP has three remarkable characteristics distinguishing from previous work: 1) PVFP designs a specific parallel principle, with three parallelism identification rules, to reasonably decide partial VNF parallelism; 2) PVFP considers SFC partition in multi-domains built on their remaining resources and potential parallel VNFs to ensure that VNFs can be reasonably distributed for resource balancing among domains; 3) FDRL-based framework of parallel VNF placement is designed to train a global intelligent model, with time-variant local autonomy explorations, for cross-domain SFC deployment, avoiding data sharing among domains. Simulation results in different scenarios demonstrate that PVFP can significantly reduce the end-to-end latency of SFCs at the medium resource expenditures to place VNFs in multiple administrative domains, compared with the state-of-the-art mechanisms.</description><subject>Convergence</subject><subject>Costs</subject><subject>Deep reinforcement learning</subject><subject>federated learning</subject><subject>Hidden Markov models</subject><subject>multiple domains</subject><subject>Network function virtualization</subject><subject>parallel placement</subject><subject>Parallel processing</subject><subject>Servers</subject><subject>Training</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtKw0AYhQdRsFYfQHAxL5A6l8xkZim1qUKpRao7CXP5R0bTpExSRZ_elHbh6hw4l8WH0DUlE0qJvl0vZ-sJIyyfcC6lFuQEjagQKmNCytPBE8mzIWDn6KLrPgihnDA5Qm8rk0xdQ41XtXGwgabHbcCvMfU7U8df8HgJ_XebPnG5a1wf26bDX9HgEjwk0w_5PcAWP0NsQpuODwswqYnN-yU6C6bu4OqoY_RSztbTh2zxNH-c3i0yx6jqs1B4y7UTzGrwXnimOaOF1S4ErwpFclBBFJYJzqxUPjjhNKjcghPWgKd8jOjh16W26xKEapvixqSfipJqz6fa86n2fKojn2Fzc9hEAPjXzwXPpeR_ELdkQg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Huang, Haojun</creator><creator>Tian, Jialin</creator><creator>Min, Geyong</creator><creator>Yin, Hao</creator><creator>Zeng, Cheng</creator><creator>Zhao, Yangming</creator><creator>Wu, Dapeng Oliver</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1395-7314</orcidid><orcidid>https://orcid.org/0000-0002-7829-7196</orcidid><orcidid>https://orcid.org/0000-0003-1755-0183</orcidid><orcidid>https://orcid.org/0000-0002-4154-8529</orcidid></search><sort><creationdate>20240801</creationdate><title>Parallel Placement of Virtualized Network Functions via Federated Deep Reinforcement Learning</title><author>Huang, Haojun ; Tian, Jialin ; Min, Geyong ; Yin, Hao ; Zeng, Cheng ; Zhao, Yangming ; Wu, Dapeng Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-f7db39c52b9edd5d293217b9cffd87804e8f57b2532b68dfc5c9e84bec5baed13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convergence</topic><topic>Costs</topic><topic>Deep reinforcement learning</topic><topic>federated learning</topic><topic>Hidden Markov models</topic><topic>multiple domains</topic><topic>Network function virtualization</topic><topic>parallel placement</topic><topic>Parallel processing</topic><topic>Servers</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Haojun</creatorcontrib><creatorcontrib>Tian, Jialin</creatorcontrib><creatorcontrib>Min, Geyong</creatorcontrib><creatorcontrib>Yin, Hao</creatorcontrib><creatorcontrib>Zeng, Cheng</creatorcontrib><creatorcontrib>Zhao, Yangming</creatorcontrib><creatorcontrib>Wu, Dapeng Oliver</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Haojun</au><au>Tian, Jialin</au><au>Min, Geyong</au><au>Yin, Hao</au><au>Zeng, Cheng</au><au>Zhao, Yangming</au><au>Wu, Dapeng Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel Placement of Virtualized Network Functions via Federated Deep Reinforcement Learning</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>32</volume><issue>4</issue><spage>2936</spage><epage>2949</epage><pages>2936-2949</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>Network Function Virtualization (NFV) introduces a new network architecture that offers different network services flexibly and dynamically in the form of Service Function Chains (SFCs), which refer to a set of Virtualization Network Functions (VNFs) chained in a specific order. However, the service latency often increases linearly with the length of SFCs due to the sequential execution of VNFs, resulting in sub-optimal performance for most delay-sensitive applications. In this paper, a novel Parallel VNF Placement (PVFP) approach is proposed for real-world networks via Federated Deep Reinforcement Learning (FDRL). PVFP has three remarkable characteristics distinguishing from previous work: 1) PVFP designs a specific parallel principle, with three parallelism identification rules, to reasonably decide partial VNF parallelism; 2) PVFP considers SFC partition in multi-domains built on their remaining resources and potential parallel VNFs to ensure that VNFs can be reasonably distributed for resource balancing among domains; 3) FDRL-based framework of parallel VNF placement is designed to train a global intelligent model, with time-variant local autonomy explorations, for cross-domain SFC deployment, avoiding data sharing among domains. Simulation results in different scenarios demonstrate that PVFP can significantly reduce the end-to-end latency of SFCs at the medium resource expenditures to place VNFs in multiple administrative domains, compared with the state-of-the-art mechanisms.</abstract><pub>IEEE</pub><doi>10.1109/TNET.2024.3366950</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1395-7314</orcidid><orcidid>https://orcid.org/0000-0002-7829-7196</orcidid><orcidid>https://orcid.org/0000-0003-1755-0183</orcidid><orcidid>https://orcid.org/0000-0002-4154-8529</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1063-6692
ispartof IEEE/ACM transactions on networking, 2024-08, Vol.32 (4), p.2936-2949
issn 1063-6692
1558-2566
language eng
recordid cdi_crossref_primary_10_1109_TNET_2024_3366950
source Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list); IEEE Xplore (Online service)
subjects Convergence
Costs
Deep reinforcement learning
federated learning
Hidden Markov models
multiple domains
Network function virtualization
parallel placement
Parallel processing
Servers
Training
title Parallel Placement of Virtualized Network Functions via Federated Deep Reinforcement Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A05%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20Placement%20of%20Virtualized%20Network%20Functions%20via%20Federated%20Deep%20Reinforcement%20Learning&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Huang,%20Haojun&rft.date=2024-08-01&rft.volume=32&rft.issue=4&rft.spage=2936&rft.epage=2949&rft.pages=2936-2949&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2024.3366950&rft_dat=%3Ccrossref_ieee_%3E10_1109_TNET_2024_3366950%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c218t-f7db39c52b9edd5d293217b9cffd87804e8f57b2532b68dfc5c9e84bec5baed13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10453466&rfr_iscdi=true