Loading…

Sparse Representation Classifier Steered Discriminative Projection With Applications to Face Recognition

A sparse representation-based classifier (SRC) is developed and shows great potential for real-world face recognition. This paper presents a dimensionality reduction method that fits SRC well. SRC adopts a class reconstruction residual-based decision rule, we use it as a criterion to steer the desig...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2013-07, Vol.24 (7), p.1023-1035
Main Authors: Yang, Jian, Chu, Delin, Zhang, Lei, Xu, Yong, Yang, Jingyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A sparse representation-based classifier (SRC) is developed and shows great potential for real-world face recognition. This paper presents a dimensionality reduction method that fits SRC well. SRC adopts a class reconstruction residual-based decision rule, we use it as a criterion to steer the design of a feature extraction method. The method is thus called the SRC steered discriminative projection (SRC-DP). SRC-DP maximizes the ratio of between-class reconstruction residual to within-class reconstruction residual in the projected space and thus enables SRC to achieve better performance. SRC-DP provides low-dimensional representation of human faces to make the SRC-based face recognition system more efficient. Experiments are done on the AR, the extended Yale B, and PIE face image databases, and results demonstrate the proposed method is more effective than other feature extraction methods based on the SRC.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2013.2249088