Loading…

Classifying Stress From Heart Rate Variability Using Salivary Biomarkers as Reference

An accurate and noninvasive stress assessment from human physiology is a strenuous task. In this paper, a pattern recognition system to learn complex correlates between heart rate variability (HRV) features and salivary stress biomarkers is proposed. Using the Trier social stress test, heart rate an...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2016-10, Vol.27 (10), p.2035-2046
Main Authors: Wei Shiung Liew, Seera, Manjeevan, Chu Kiong Loo, Einly Lim, Kubota, Naoyuki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-6edee373eda857a8382ab40b09168cbcee2c62c6afa5f1eaf3944c6abcc03e23
cites cdi_FETCH-LOGICAL-c351t-6edee373eda857a8382ab40b09168cbcee2c62c6afa5f1eaf3944c6abcc03e23
container_end_page 2046
container_issue 10
container_start_page 2035
container_title IEEE transaction on neural networks and learning systems
container_volume 27
creator Wei Shiung Liew
Seera, Manjeevan
Chu Kiong Loo
Einly Lim
Kubota, Naoyuki
description An accurate and noninvasive stress assessment from human physiology is a strenuous task. In this paper, a pattern recognition system to learn complex correlates between heart rate variability (HRV) features and salivary stress biomarkers is proposed. Using the Trier social stress test, heart rate and salivary measurements were obtained from volunteers under varying levels of stress induction. Measurements of salivary alpha-amylase and cortisol were used as objective measures of stress, and were correlated with the HRV features using fuzzy ARTMAP (FAM). In improving the predictive ability of the ARTMAPs, techniques, such as genetic algorithms for parameter optimization and voting ensembles, were employed. The ensemble of FAMs can be used for predicting stress responses of salivary alpha-amylase or cortisol using heart rate measurements as the input. Using alpha-amylase as the stress indicator, the ensemble was able to classify stress from heart rate features with 75% accuracy, and 80% accuracy when cortisol was used.
doi_str_mv 10.1109/TNNLS.2015.2468721
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNNLS_2015_2468721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7234929</ieee_id><sourcerecordid>4223718261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-6edee373eda857a8382ab40b09168cbcee2c62c6afa5f1eaf3944c6abcc03e23</originalsourceid><addsrcrecordid>eNpdkN9LwzAQgIMoTnT_gIIEfPGlMz_aNHnUoU4YCtsU38o1u0q0azXphP33Zm7uwePgcuS7I_kIOeVswDkzV7PHx_F0IBjPBiJVOhd8jxwJrkQipNb7u3P-2iP9EN5ZDMUylZpD0hNKpizX-RF5HtYQgqtWrnmj085jCPTOtws6QvAdnUCH9AW8g9LVrlvR5_ALQu2-wa_ojWsX4D_QBwqBTrBCj43FE3JQQR2wv63HZHZ3OxuOkvHT_cPwepxYmfEuUThHlLnEOegsBy21gDJlJTNcaVtaRGFVTKggqzhCJU2axra0lkkU8phcbtZ--vZriaErFi5YrGtosF2GgmshmRQm1RG9-Ie-t0vfxMdFSjKjTMZ5pMSGsr4NwWNVfHoXP7gqOCvW2otf7cVae7HVHofOt6uX5QLnu5E_yRE42wAOEXfXuZCpEUb-ALPfhvo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830969511</pqid></control><display><type>article</type><title>Classifying Stress From Heart Rate Variability Using Salivary Biomarkers as Reference</title><source>IEEE Xplore (Online service)</source><creator>Wei Shiung Liew ; Seera, Manjeevan ; Chu Kiong Loo ; Einly Lim ; Kubota, Naoyuki</creator><creatorcontrib>Wei Shiung Liew ; Seera, Manjeevan ; Chu Kiong Loo ; Einly Lim ; Kubota, Naoyuki</creatorcontrib><description>An accurate and noninvasive stress assessment from human physiology is a strenuous task. In this paper, a pattern recognition system to learn complex correlates between heart rate variability (HRV) features and salivary stress biomarkers is proposed. Using the Trier social stress test, heart rate and salivary measurements were obtained from volunteers under varying levels of stress induction. Measurements of salivary alpha-amylase and cortisol were used as objective measures of stress, and were correlated with the HRV features using fuzzy ARTMAP (FAM). In improving the predictive ability of the ARTMAPs, techniques, such as genetic algorithms for parameter optimization and voting ensembles, were employed. The ensemble of FAMs can be used for predicting stress responses of salivary alpha-amylase or cortisol using heart rate measurements as the input. Using alpha-amylase as the stress indicator, the ensemble was able to classify stress from heart rate features with 75% accuracy, and 80% accuracy when cortisol was used.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2015.2468721</identifier><identifier>PMID: 26340787</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Alpha-amylase ; Biological cells ; Biomarkers ; cortisol ; Exercise Test ; fuzzy ARTMAP (FAM) ; Genetic algorithms ; genetic optimization ; Heart Rate ; Heart rate variability ; heart rate variability (HRV) ; Hormones ; Humans ; Hydrocortisone ; negative correlation (NC) ; Neural Networks (Computer) ; Pattern recognition systems ; probabilistic voting ; Saliva ; Sociology ; Statistics ; Stress ; Training</subject><ispartof>IEEE transaction on neural networks and learning systems, 2016-10, Vol.27 (10), p.2035-2046</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-6edee373eda857a8382ab40b09168cbcee2c62c6afa5f1eaf3944c6abcc03e23</citedby><cites>FETCH-LOGICAL-c351t-6edee373eda857a8382ab40b09168cbcee2c62c6afa5f1eaf3944c6abcc03e23</cites><orcidid>0000-0002-2797-3668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7234929$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26340787$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei Shiung Liew</creatorcontrib><creatorcontrib>Seera, Manjeevan</creatorcontrib><creatorcontrib>Chu Kiong Loo</creatorcontrib><creatorcontrib>Einly Lim</creatorcontrib><creatorcontrib>Kubota, Naoyuki</creatorcontrib><title>Classifying Stress From Heart Rate Variability Using Salivary Biomarkers as Reference</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>An accurate and noninvasive stress assessment from human physiology is a strenuous task. In this paper, a pattern recognition system to learn complex correlates between heart rate variability (HRV) features and salivary stress biomarkers is proposed. Using the Trier social stress test, heart rate and salivary measurements were obtained from volunteers under varying levels of stress induction. Measurements of salivary alpha-amylase and cortisol were used as objective measures of stress, and were correlated with the HRV features using fuzzy ARTMAP (FAM). In improving the predictive ability of the ARTMAPs, techniques, such as genetic algorithms for parameter optimization and voting ensembles, were employed. The ensemble of FAMs can be used for predicting stress responses of salivary alpha-amylase or cortisol using heart rate measurements as the input. Using alpha-amylase as the stress indicator, the ensemble was able to classify stress from heart rate features with 75% accuracy, and 80% accuracy when cortisol was used.</description><subject>Alpha-amylase</subject><subject>Biological cells</subject><subject>Biomarkers</subject><subject>cortisol</subject><subject>Exercise Test</subject><subject>fuzzy ARTMAP (FAM)</subject><subject>Genetic algorithms</subject><subject>genetic optimization</subject><subject>Heart Rate</subject><subject>Heart rate variability</subject><subject>heart rate variability (HRV)</subject><subject>Hormones</subject><subject>Humans</subject><subject>Hydrocortisone</subject><subject>negative correlation (NC)</subject><subject>Neural Networks (Computer)</subject><subject>Pattern recognition systems</subject><subject>probabilistic voting</subject><subject>Saliva</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Stress</subject><subject>Training</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkN9LwzAQgIMoTnT_gIIEfPGlMz_aNHnUoU4YCtsU38o1u0q0azXphP33Zm7uwePgcuS7I_kIOeVswDkzV7PHx_F0IBjPBiJVOhd8jxwJrkQipNb7u3P-2iP9EN5ZDMUylZpD0hNKpizX-RF5HtYQgqtWrnmj085jCPTOtws6QvAdnUCH9AW8g9LVrlvR5_ALQu2-wa_ojWsX4D_QBwqBTrBCj43FE3JQQR2wv63HZHZ3OxuOkvHT_cPwepxYmfEuUThHlLnEOegsBy21gDJlJTNcaVtaRGFVTKggqzhCJU2axra0lkkU8phcbtZ--vZriaErFi5YrGtosF2GgmshmRQm1RG9-Ie-t0vfxMdFSjKjTMZ5pMSGsr4NwWNVfHoXP7gqOCvW2otf7cVae7HVHofOt6uX5QLnu5E_yRE42wAOEXfXuZCpEUb-ALPfhvo</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Wei Shiung Liew</creator><creator>Seera, Manjeevan</creator><creator>Chu Kiong Loo</creator><creator>Einly Lim</creator><creator>Kubota, Naoyuki</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2797-3668</orcidid></search><sort><creationdate>201610</creationdate><title>Classifying Stress From Heart Rate Variability Using Salivary Biomarkers as Reference</title><author>Wei Shiung Liew ; Seera, Manjeevan ; Chu Kiong Loo ; Einly Lim ; Kubota, Naoyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-6edee373eda857a8382ab40b09168cbcee2c62c6afa5f1eaf3944c6abcc03e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alpha-amylase</topic><topic>Biological cells</topic><topic>Biomarkers</topic><topic>cortisol</topic><topic>Exercise Test</topic><topic>fuzzy ARTMAP (FAM)</topic><topic>Genetic algorithms</topic><topic>genetic optimization</topic><topic>Heart Rate</topic><topic>Heart rate variability</topic><topic>heart rate variability (HRV)</topic><topic>Hormones</topic><topic>Humans</topic><topic>Hydrocortisone</topic><topic>negative correlation (NC)</topic><topic>Neural Networks (Computer)</topic><topic>Pattern recognition systems</topic><topic>probabilistic voting</topic><topic>Saliva</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Stress</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Wei Shiung Liew</creatorcontrib><creatorcontrib>Seera, Manjeevan</creatorcontrib><creatorcontrib>Chu Kiong Loo</creatorcontrib><creatorcontrib>Einly Lim</creatorcontrib><creatorcontrib>Kubota, Naoyuki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei Shiung Liew</au><au>Seera, Manjeevan</au><au>Chu Kiong Loo</au><au>Einly Lim</au><au>Kubota, Naoyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classifying Stress From Heart Rate Variability Using Salivary Biomarkers as Reference</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2016-10</date><risdate>2016</risdate><volume>27</volume><issue>10</issue><spage>2035</spage><epage>2046</epage><pages>2035-2046</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>An accurate and noninvasive stress assessment from human physiology is a strenuous task. In this paper, a pattern recognition system to learn complex correlates between heart rate variability (HRV) features and salivary stress biomarkers is proposed. Using the Trier social stress test, heart rate and salivary measurements were obtained from volunteers under varying levels of stress induction. Measurements of salivary alpha-amylase and cortisol were used as objective measures of stress, and were correlated with the HRV features using fuzzy ARTMAP (FAM). In improving the predictive ability of the ARTMAPs, techniques, such as genetic algorithms for parameter optimization and voting ensembles, were employed. The ensemble of FAMs can be used for predicting stress responses of salivary alpha-amylase or cortisol using heart rate measurements as the input. Using alpha-amylase as the stress indicator, the ensemble was able to classify stress from heart rate features with 75% accuracy, and 80% accuracy when cortisol was used.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26340787</pmid><doi>10.1109/TNNLS.2015.2468721</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2797-3668</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2016-10, Vol.27 (10), p.2035-2046
issn 2162-237X
2162-2388
language eng
recordid cdi_crossref_primary_10_1109_TNNLS_2015_2468721
source IEEE Xplore (Online service)
subjects Alpha-amylase
Biological cells
Biomarkers
cortisol
Exercise Test
fuzzy ARTMAP (FAM)
Genetic algorithms
genetic optimization
Heart Rate
Heart rate variability
heart rate variability (HRV)
Hormones
Humans
Hydrocortisone
negative correlation (NC)
Neural Networks (Computer)
Pattern recognition systems
probabilistic voting
Saliva
Sociology
Statistics
Stress
Training
title Classifying Stress From Heart Rate Variability Using Salivary Biomarkers as Reference
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classifying%20Stress%20From%20Heart%20Rate%20Variability%20Using%20Salivary%20Biomarkers%20as%20Reference&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Wei%20Shiung%20Liew&rft.date=2016-10&rft.volume=27&rft.issue=10&rft.spage=2035&rft.epage=2046&rft.pages=2035-2046&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2015.2468721&rft_dat=%3Cproquest_cross%3E4223718261%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-6edee373eda857a8382ab40b09168cbcee2c62c6afa5f1eaf3944c6abcc03e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1830969511&rft_id=info:pmid/26340787&rft_ieee_id=7234929&rfr_iscdi=true