Loading…
Event-Triggered Adaptive Optimal Control With Output Feedback: An Adaptive Dynamic Programming Approach
This article presents an event-triggered output-feedback adaptive optimal control method for continuous-time linear systems. First, it is shown that the unmeasurable states can be reconstructed by using the measured input and output data. An event-based feedback strategy is then proposed to reduce t...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2021-11, Vol.32 (11), p.5208-5221 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article presents an event-triggered output-feedback adaptive optimal control method for continuous-time linear systems. First, it is shown that the unmeasurable states can be reconstructed by using the measured input and output data. An event-based feedback strategy is then proposed to reduce the number of controller updates and save communication resources. The discrete-time algebraic Riccati equation is iteratively solved through event-triggered adaptive dynamic programming based on both policy iteration (PI) and value iteration (VI) methods. The convergence of the proposed algorithm and the closed-loop stability is carried out by using the Lyapunov techniques. Two numerical examples are employed to verify the effectiveness of the design methodology. |
---|---|
ISSN: | 2162-237X 2162-2388 |
DOI: | 10.1109/TNNLS.2020.3027301 |