Loading…

Effective Emotion Recognition by Learning Discriminative Graph Topologies in EEG Brain Networks

Multichannel electroencephalogram (EEG) is an array signal that represents brain neural networks and can be applied to characterize information propagation patterns for different emotional states. To reveal these inherent spatial graph features and increase the stability of emotion recognition, we p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2024-08, Vol.35 (8), p.10258-10272
Main Authors: Li, Cunbo, Li, Peiyang, Zhang, Yangsong, Li, Ning, Si, Yajing, Li, Fali, Cao, Zehong, Chen, Huafu, Chen, Badong, Yao, Dezhong, Xu, Peng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c324t-686ad8296a8eb730c77974c6d2c93f3526d38561947513a700497873f73edd863
cites cdi_FETCH-LOGICAL-c324t-686ad8296a8eb730c77974c6d2c93f3526d38561947513a700497873f73edd863
container_end_page 10272
container_issue 8
container_start_page 10258
container_title IEEE transaction on neural networks and learning systems
container_volume 35
creator Li, Cunbo
Li, Peiyang
Zhang, Yangsong
Li, Ning
Si, Yajing
Li, Fali
Cao, Zehong
Chen, Huafu
Chen, Badong
Yao, Dezhong
Xu, Peng
description Multichannel electroencephalogram (EEG) is an array signal that represents brain neural networks and can be applied to characterize information propagation patterns for different emotional states. To reveal these inherent spatial graph features and increase the stability of emotion recognition, we propose an effective emotion recognition model that performs multicategory emotion recognition with multiple emotion-related spatial network topology patterns (MESNPs) by learning discriminative graph topologies in EEG brain networks. To evaluate the performance of our proposed MESNP model, we conducted single-subject and multisubject four-class classification experiments on two public datasets, MAHNOB-HCI and DEAP. Compared with existing feature extraction methods, the MESNP model significantly enhances the multiclass emotional classification performance in the single-subject and multisubject conditions. To evaluate the online version of the proposed MESNP model, we designed an online emotion monitoring system. We recruited 14 participants to conduct the online emotion decoding experiments. The average online experimental accuracy of the 14 participants was 84.56%, indicating that our model can be applied in affective brain-computer interface (aBCI) systems. The offline and online experimental results demonstrate that the proposed MESNP model effectively captures discriminative graph topology patterns and significantly improves emotion classification performance. Moreover, the proposed MESNP model provides a new scheme for extracting features from strongly coupled array signals.
doi_str_mv 10.1109/TNNLS.2023.3238519
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNNLS_2023_3238519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10035420</ieee_id><sourcerecordid>2797148760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-686ad8296a8eb730c77974c6d2c93f3526d38561947513a700497873f73edd863</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMobsz9ARHppTeb-WiT5lJnnUKZoBO8C1l7OqNdM5NO2b83-3CYm7yB57zkPAidEzwkBMvr6WSSvwwppmzIKEsTIo9QlxJOB-GVHh-yeOugvvcfOByOEx7LU9RhAtOAyS5SWVVB0ZpviLKFbY1tomco7Lwx2zxbRzlo15hmHt0ZXzizMI3e4mOnl-_R1C5tbecGfGSaKMvG0a3TIU2g_bHu05-hk0rXHvr7u4de77Pp6GGQP40fRzf5oGA0bgc85bpMqeQ6hZlguBBCirjgJS0kq1hCeRl25ETGIiFMC4xjKVLBKsGgLFPOeuhq17t09msFvlWL8F2oa92AXXlFQx-JU8FxQOkOLZz13kGllmEt7daKYLVxq7Zu1cat2rsNQ5f7_tVsAeVh5M9kAC52gAGAf42YJTHF7BfhZnyb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2797148760</pqid></control><display><type>article</type><title>Effective Emotion Recognition by Learning Discriminative Graph Topologies in EEG Brain Networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Cunbo ; Li, Peiyang ; Zhang, Yangsong ; Li, Ning ; Si, Yajing ; Li, Fali ; Cao, Zehong ; Chen, Huafu ; Chen, Badong ; Yao, Dezhong ; Xu, Peng</creator><creatorcontrib>Li, Cunbo ; Li, Peiyang ; Zhang, Yangsong ; Li, Ning ; Si, Yajing ; Li, Fali ; Cao, Zehong ; Chen, Huafu ; Chen, Badong ; Yao, Dezhong ; Xu, Peng</creatorcontrib><description>Multichannel electroencephalogram (EEG) is an array signal that represents brain neural networks and can be applied to characterize information propagation patterns for different emotional states. To reveal these inherent spatial graph features and increase the stability of emotion recognition, we propose an effective emotion recognition model that performs multicategory emotion recognition with multiple emotion-related spatial network topology patterns (MESNPs) by learning discriminative graph topologies in EEG brain networks. To evaluate the performance of our proposed MESNP model, we conducted single-subject and multisubject four-class classification experiments on two public datasets, MAHNOB-HCI and DEAP. Compared with existing feature extraction methods, the MESNP model significantly enhances the multiclass emotional classification performance in the single-subject and multisubject conditions. To evaluate the online version of the proposed MESNP model, we designed an online emotion monitoring system. We recruited 14 participants to conduct the online emotion decoding experiments. The average online experimental accuracy of the 14 participants was 84.56%, indicating that our model can be applied in affective brain-computer interface (aBCI) systems. The offline and online experimental results demonstrate that the proposed MESNP model effectively captures discriminative graph topology patterns and significantly improves emotion classification performance. Moreover, the proposed MESNP model provides a new scheme for extracting features from strongly coupled array signals.</description><identifier>ISSN: 2162-237X</identifier><identifier>ISSN: 2162-2388</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2023.3238519</identifier><identifier>PMID: 37022389</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Algorithms ; Brain - physiology ; Brain modeling ; Brain neural network ; Brain-Computer Interfaces ; Electroencephalography ; Electroencephalography - methods ; Emotion recognition ; emotional intelligence ; Emotions - classification ; Emotions - physiology ; Feature extraction ; Female ; graph topology ; Humans ; Machine Learning ; Male ; Monitoring ; multiple emotion-related spatial network topology pattern (MESNP) ; Network topology ; Neural Networks, Computer ; Pattern Recognition, Automated - methods ; Topology ; Young Adult</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-08, Vol.35 (8), p.10258-10272</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-686ad8296a8eb730c77974c6d2c93f3526d38561947513a700497873f73edd863</citedby><cites>FETCH-LOGICAL-c324t-686ad8296a8eb730c77974c6d2c93f3526d38561947513a700497873f73edd863</cites><orcidid>0000-0002-3937-2560 ; 0000-0002-1954-6113 ; 0000-0003-3656-0328 ; 0000-0002-4062-4753 ; 0000-0002-2450-4591 ; 0000-0002-8042-879X ; 0000-0002-7932-0386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10035420$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37022389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Cunbo</creatorcontrib><creatorcontrib>Li, Peiyang</creatorcontrib><creatorcontrib>Zhang, Yangsong</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Si, Yajing</creatorcontrib><creatorcontrib>Li, Fali</creatorcontrib><creatorcontrib>Cao, Zehong</creatorcontrib><creatorcontrib>Chen, Huafu</creatorcontrib><creatorcontrib>Chen, Badong</creatorcontrib><creatorcontrib>Yao, Dezhong</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><title>Effective Emotion Recognition by Learning Discriminative Graph Topologies in EEG Brain Networks</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Multichannel electroencephalogram (EEG) is an array signal that represents brain neural networks and can be applied to characterize information propagation patterns for different emotional states. To reveal these inherent spatial graph features and increase the stability of emotion recognition, we propose an effective emotion recognition model that performs multicategory emotion recognition with multiple emotion-related spatial network topology patterns (MESNPs) by learning discriminative graph topologies in EEG brain networks. To evaluate the performance of our proposed MESNP model, we conducted single-subject and multisubject four-class classification experiments on two public datasets, MAHNOB-HCI and DEAP. Compared with existing feature extraction methods, the MESNP model significantly enhances the multiclass emotional classification performance in the single-subject and multisubject conditions. To evaluate the online version of the proposed MESNP model, we designed an online emotion monitoring system. We recruited 14 participants to conduct the online emotion decoding experiments. The average online experimental accuracy of the 14 participants was 84.56%, indicating that our model can be applied in affective brain-computer interface (aBCI) systems. The offline and online experimental results demonstrate that the proposed MESNP model effectively captures discriminative graph topology patterns and significantly improves emotion classification performance. Moreover, the proposed MESNP model provides a new scheme for extracting features from strongly coupled array signals.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Brain - physiology</subject><subject>Brain modeling</subject><subject>Brain neural network</subject><subject>Brain-Computer Interfaces</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Emotion recognition</subject><subject>emotional intelligence</subject><subject>Emotions - classification</subject><subject>Emotions - physiology</subject><subject>Feature extraction</subject><subject>Female</subject><subject>graph topology</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Monitoring</subject><subject>multiple emotion-related spatial network topology pattern (MESNP)</subject><subject>Network topology</subject><subject>Neural Networks, Computer</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Topology</subject><subject>Young Adult</subject><issn>2162-237X</issn><issn>2162-2388</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMobsz9ARHppTeb-WiT5lJnnUKZoBO8C1l7OqNdM5NO2b83-3CYm7yB57zkPAidEzwkBMvr6WSSvwwppmzIKEsTIo9QlxJOB-GVHh-yeOugvvcfOByOEx7LU9RhAtOAyS5SWVVB0ZpviLKFbY1tomco7Lwx2zxbRzlo15hmHt0ZXzizMI3e4mOnl-_R1C5tbecGfGSaKMvG0a3TIU2g_bHu05-hk0rXHvr7u4de77Pp6GGQP40fRzf5oGA0bgc85bpMqeQ6hZlguBBCirjgJS0kq1hCeRl25ETGIiFMC4xjKVLBKsGgLFPOeuhq17t09msFvlWL8F2oa92AXXlFQx-JU8FxQOkOLZz13kGllmEt7daKYLVxq7Zu1cat2rsNQ5f7_tVsAeVh5M9kAC52gAGAf42YJTHF7BfhZnyb</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Li, Cunbo</creator><creator>Li, Peiyang</creator><creator>Zhang, Yangsong</creator><creator>Li, Ning</creator><creator>Si, Yajing</creator><creator>Li, Fali</creator><creator>Cao, Zehong</creator><creator>Chen, Huafu</creator><creator>Chen, Badong</creator><creator>Yao, Dezhong</creator><creator>Xu, Peng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3937-2560</orcidid><orcidid>https://orcid.org/0000-0002-1954-6113</orcidid><orcidid>https://orcid.org/0000-0003-3656-0328</orcidid><orcidid>https://orcid.org/0000-0002-4062-4753</orcidid><orcidid>https://orcid.org/0000-0002-2450-4591</orcidid><orcidid>https://orcid.org/0000-0002-8042-879X</orcidid><orcidid>https://orcid.org/0000-0002-7932-0386</orcidid></search><sort><creationdate>20240801</creationdate><title>Effective Emotion Recognition by Learning Discriminative Graph Topologies in EEG Brain Networks</title><author>Li, Cunbo ; Li, Peiyang ; Zhang, Yangsong ; Li, Ning ; Si, Yajing ; Li, Fali ; Cao, Zehong ; Chen, Huafu ; Chen, Badong ; Yao, Dezhong ; Xu, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-686ad8296a8eb730c77974c6d2c93f3526d38561947513a700497873f73edd863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Brain - physiology</topic><topic>Brain modeling</topic><topic>Brain neural network</topic><topic>Brain-Computer Interfaces</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Emotion recognition</topic><topic>emotional intelligence</topic><topic>Emotions - classification</topic><topic>Emotions - physiology</topic><topic>Feature extraction</topic><topic>Female</topic><topic>graph topology</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Monitoring</topic><topic>multiple emotion-related spatial network topology pattern (MESNP)</topic><topic>Network topology</topic><topic>Neural Networks, Computer</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Topology</topic><topic>Young Adult</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Cunbo</creatorcontrib><creatorcontrib>Li, Peiyang</creatorcontrib><creatorcontrib>Zhang, Yangsong</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Si, Yajing</creatorcontrib><creatorcontrib>Li, Fali</creatorcontrib><creatorcontrib>Cao, Zehong</creatorcontrib><creatorcontrib>Chen, Huafu</creatorcontrib><creatorcontrib>Chen, Badong</creatorcontrib><creatorcontrib>Yao, Dezhong</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Cunbo</au><au>Li, Peiyang</au><au>Zhang, Yangsong</au><au>Li, Ning</au><au>Si, Yajing</au><au>Li, Fali</au><au>Cao, Zehong</au><au>Chen, Huafu</au><au>Chen, Badong</au><au>Yao, Dezhong</au><au>Xu, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective Emotion Recognition by Learning Discriminative Graph Topologies in EEG Brain Networks</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>35</volume><issue>8</issue><spage>10258</spage><epage>10272</epage><pages>10258-10272</pages><issn>2162-237X</issn><issn>2162-2388</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Multichannel electroencephalogram (EEG) is an array signal that represents brain neural networks and can be applied to characterize information propagation patterns for different emotional states. To reveal these inherent spatial graph features and increase the stability of emotion recognition, we propose an effective emotion recognition model that performs multicategory emotion recognition with multiple emotion-related spatial network topology patterns (MESNPs) by learning discriminative graph topologies in EEG brain networks. To evaluate the performance of our proposed MESNP model, we conducted single-subject and multisubject four-class classification experiments on two public datasets, MAHNOB-HCI and DEAP. Compared with existing feature extraction methods, the MESNP model significantly enhances the multiclass emotional classification performance in the single-subject and multisubject conditions. To evaluate the online version of the proposed MESNP model, we designed an online emotion monitoring system. We recruited 14 participants to conduct the online emotion decoding experiments. The average online experimental accuracy of the 14 participants was 84.56%, indicating that our model can be applied in affective brain-computer interface (aBCI) systems. The offline and online experimental results demonstrate that the proposed MESNP model effectively captures discriminative graph topology patterns and significantly improves emotion classification performance. Moreover, the proposed MESNP model provides a new scheme for extracting features from strongly coupled array signals.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37022389</pmid><doi>10.1109/TNNLS.2023.3238519</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3937-2560</orcidid><orcidid>https://orcid.org/0000-0002-1954-6113</orcidid><orcidid>https://orcid.org/0000-0003-3656-0328</orcidid><orcidid>https://orcid.org/0000-0002-4062-4753</orcidid><orcidid>https://orcid.org/0000-0002-2450-4591</orcidid><orcidid>https://orcid.org/0000-0002-8042-879X</orcidid><orcidid>https://orcid.org/0000-0002-7932-0386</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2024-08, Vol.35 (8), p.10258-10272
issn 2162-237X
2162-2388
2162-2388
language eng
recordid cdi_crossref_primary_10_1109_TNNLS_2023_3238519
source IEEE Electronic Library (IEL) Journals
subjects Adult
Algorithms
Brain - physiology
Brain modeling
Brain neural network
Brain-Computer Interfaces
Electroencephalography
Electroencephalography - methods
Emotion recognition
emotional intelligence
Emotions - classification
Emotions - physiology
Feature extraction
Female
graph topology
Humans
Machine Learning
Male
Monitoring
multiple emotion-related spatial network topology pattern (MESNP)
Network topology
Neural Networks, Computer
Pattern Recognition, Automated - methods
Topology
Young Adult
title Effective Emotion Recognition by Learning Discriminative Graph Topologies in EEG Brain Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A55%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20Emotion%20Recognition%20by%20Learning%20Discriminative%20Graph%20Topologies%20in%20EEG%20Brain%20Networks&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Li,%20Cunbo&rft.date=2024-08-01&rft.volume=35&rft.issue=8&rft.spage=10258&rft.epage=10272&rft.pages=10258-10272&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2023.3238519&rft_dat=%3Cproquest_cross%3E2797148760%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-686ad8296a8eb730c77974c6d2c93f3526d38561947513a700497873f73edd863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2797148760&rft_id=info:pmid/37022389&rft_ieee_id=10035420&rfr_iscdi=true