Loading…

Feature selection in MLPs and SVMs based on maximum output information

This paper presents feature selection algorithms for multilayer perceptrons (MLPs) and multiclass support vector machines (SVMs), using mutual information between class labels and classifier outputs, as an objective function. This objective function involves inexpensive computation of information me...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2004-07, Vol.15 (4), p.937-948
Main Authors: Sindhwani, V., Rakshit, S., Deodhare, D., Erdogmus, D., Principe, J.C., Niyogi, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c510t-2b5fd9f51894dba85894047d35f9b064f8fc845182d0ac8321a6b8a046efffe13
cites cdi_FETCH-LOGICAL-c510t-2b5fd9f51894dba85894047d35f9b064f8fc845182d0ac8321a6b8a046efffe13
container_end_page 948
container_issue 4
container_start_page 937
container_title IEEE transaction on neural networks and learning systems
container_volume 15
creator Sindhwani, V.
Rakshit, S.
Deodhare, D.
Erdogmus, D.
Principe, J.C.
Niyogi, P.
description This paper presents feature selection algorithms for multilayer perceptrons (MLPs) and multiclass support vector machines (SVMs), using mutual information between class labels and classifier outputs, as an objective function. This objective function involves inexpensive computation of information measures only on discrete variables; provides immunity to prior class probabilities; and brackets the probability of error of the classifier. The maximum output information (MOI) algorithms employ this function for feature subset selection by greedy elimination and directed search. The output of the MOI algorithms is a feature subset of user-defined size and an associated trained classifier (MLP/SVM). These algorithms compare favorably with a number of other methods in terms of performance on various artificial and real-world data sets.
doi_str_mv 10.1109/TNN.2004.828772
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNN_2004_828772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1310365</ieee_id><sourcerecordid>66934223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-2b5fd9f51894dba85894047d35f9b064f8fc845182d0ac8321a6b8a046efffe13</originalsourceid><addsrcrecordid>eNqFkU1Lw0AQhhdRbK2ePQgSPOgp7exndo9SrAptFaxel02yCylNUrMJ6L93QwsFD3qagfeZGYYHoUsMY4xBTVbL5ZgAsLEkMknIERpixXAMoOhx6IHxWBGSDNCZ92sAzDiIUzTAnAkMkg_RbGZN2zU28nZjs7aoq6ioosX81UemyqO3j4WPUuNtHoWkNF9F2ZVR3bXbrg2gq5vS9EPn6MSZjbcX-zpC77OH1fQpnr88Pk_v53HGMbQxSbnLleNYKpanRvJQgSU55U6lIJiTLpMsxCQHk0lKsBGpNMCEdc5ZTEfobrd329SfnfWtLguf2c3GVLbuvFaAhSIgSSBv_ySFUJQRQv8FiaSYJbS_ffMLXNddU4V3dX9SUgUsQJMdlDW19411etsUpWm-NQbdK9NBme6V6Z2yMHG9X9ulpc0P_N5RAK52QGGtPcQUAxWc_gALqZfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920883904</pqid></control><display><type>article</type><title>Feature selection in MLPs and SVMs based on maximum output information</title><source>IEEE Xplore (Online service)</source><creator>Sindhwani, V. ; Rakshit, S. ; Deodhare, D. ; Erdogmus, D. ; Principe, J.C. ; Niyogi, P.</creator><creatorcontrib>Sindhwani, V. ; Rakshit, S. ; Deodhare, D. ; Erdogmus, D. ; Principe, J.C. ; Niyogi, P.</creatorcontrib><description>This paper presents feature selection algorithms for multilayer perceptrons (MLPs) and multiclass support vector machines (SVMs), using mutual information between class labels and classifier outputs, as an objective function. This objective function involves inexpensive computation of information measures only on discrete variables; provides immunity to prior class probabilities; and brackets the probability of error of the classifier. The maximum output information (MOI) algorithms employ this function for feature subset selection by greedy elimination and directed search. The output of the MOI algorithms is a feature subset of user-defined size and an associated trained classifier (MLP/SVM). These algorithms compare favorably with a number of other methods in terms of performance on various artificial and real-world data sets.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNN.2004.828772</identifier><identifier>PMID: 15461085</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Breast Neoplasms - classification ; Breast Neoplasms - diagnosis ; Classifiers ; Cluster Analysis ; Computer science ; Computer Simulation ; Computing Methodologies ; Decision Support Techniques ; Error analysis ; Filters ; Humans ; Information Storage and Retrieval - methods ; Information Theory ; Likelihood Functions ; Mathematical analysis ; Mathematical models ; Models, Statistical ; Multilayer perceptrons ; Mutual information ; Neural networks ; Neural Networks (Computer) ; Partitioning algorithms ; Pattern Recognition, Automated ; Probability distribution ; Probability Learning ; Supervised learning ; Support vector machine classification ; Support vector machines</subject><ispartof>IEEE transaction on neural networks and learning systems, 2004-07, Vol.15 (4), p.937-948</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-2b5fd9f51894dba85894047d35f9b064f8fc845182d0ac8321a6b8a046efffe13</citedby><cites>FETCH-LOGICAL-c510t-2b5fd9f51894dba85894047d35f9b064f8fc845182d0ac8321a6b8a046efffe13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1310365$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15461085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sindhwani, V.</creatorcontrib><creatorcontrib>Rakshit, S.</creatorcontrib><creatorcontrib>Deodhare, D.</creatorcontrib><creatorcontrib>Erdogmus, D.</creatorcontrib><creatorcontrib>Principe, J.C.</creatorcontrib><creatorcontrib>Niyogi, P.</creatorcontrib><title>Feature selection in MLPs and SVMs based on maximum output information</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>This paper presents feature selection algorithms for multilayer perceptrons (MLPs) and multiclass support vector machines (SVMs), using mutual information between class labels and classifier outputs, as an objective function. This objective function involves inexpensive computation of information measures only on discrete variables; provides immunity to prior class probabilities; and brackets the probability of error of the classifier. The maximum output information (MOI) algorithms employ this function for feature subset selection by greedy elimination and directed search. The output of the MOI algorithms is a feature subset of user-defined size and an associated trained classifier (MLP/SVM). These algorithms compare favorably with a number of other methods in terms of performance on various artificial and real-world data sets.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Breast Neoplasms - classification</subject><subject>Breast Neoplasms - diagnosis</subject><subject>Classifiers</subject><subject>Cluster Analysis</subject><subject>Computer science</subject><subject>Computer Simulation</subject><subject>Computing Methodologies</subject><subject>Decision Support Techniques</subject><subject>Error analysis</subject><subject>Filters</subject><subject>Humans</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information Theory</subject><subject>Likelihood Functions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Models, Statistical</subject><subject>Multilayer perceptrons</subject><subject>Mutual information</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Partitioning algorithms</subject><subject>Pattern Recognition, Automated</subject><subject>Probability distribution</subject><subject>Probability Learning</subject><subject>Supervised learning</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkU1Lw0AQhhdRbK2ePQgSPOgp7exndo9SrAptFaxel02yCylNUrMJ6L93QwsFD3qagfeZGYYHoUsMY4xBTVbL5ZgAsLEkMknIERpixXAMoOhx6IHxWBGSDNCZ92sAzDiIUzTAnAkMkg_RbGZN2zU28nZjs7aoq6ioosX81UemyqO3j4WPUuNtHoWkNF9F2ZVR3bXbrg2gq5vS9EPn6MSZjbcX-zpC77OH1fQpnr88Pk_v53HGMbQxSbnLleNYKpanRvJQgSU55U6lIJiTLpMsxCQHk0lKsBGpNMCEdc5ZTEfobrd329SfnfWtLguf2c3GVLbuvFaAhSIgSSBv_ySFUJQRQv8FiaSYJbS_ffMLXNddU4V3dX9SUgUsQJMdlDW19411etsUpWm-NQbdK9NBme6V6Z2yMHG9X9ulpc0P_N5RAK52QGGtPcQUAxWc_gALqZfg</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Sindhwani, V.</creator><creator>Rakshit, S.</creator><creator>Deodhare, D.</creator><creator>Erdogmus, D.</creator><creator>Principe, J.C.</creator><creator>Niyogi, P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20040701</creationdate><title>Feature selection in MLPs and SVMs based on maximum output information</title><author>Sindhwani, V. ; Rakshit, S. ; Deodhare, D. ; Erdogmus, D. ; Principe, J.C. ; Niyogi, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-2b5fd9f51894dba85894047d35f9b064f8fc845182d0ac8321a6b8a046efffe13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Breast Neoplasms - classification</topic><topic>Breast Neoplasms - diagnosis</topic><topic>Classifiers</topic><topic>Cluster Analysis</topic><topic>Computer science</topic><topic>Computer Simulation</topic><topic>Computing Methodologies</topic><topic>Decision Support Techniques</topic><topic>Error analysis</topic><topic>Filters</topic><topic>Humans</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information Theory</topic><topic>Likelihood Functions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Models, Statistical</topic><topic>Multilayer perceptrons</topic><topic>Mutual information</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Partitioning algorithms</topic><topic>Pattern Recognition, Automated</topic><topic>Probability distribution</topic><topic>Probability Learning</topic><topic>Supervised learning</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Sindhwani, V.</creatorcontrib><creatorcontrib>Rakshit, S.</creatorcontrib><creatorcontrib>Deodhare, D.</creatorcontrib><creatorcontrib>Erdogmus, D.</creatorcontrib><creatorcontrib>Principe, J.C.</creatorcontrib><creatorcontrib>Niyogi, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sindhwani, V.</au><au>Rakshit, S.</au><au>Deodhare, D.</au><au>Erdogmus, D.</au><au>Principe, J.C.</au><au>Niyogi, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature selection in MLPs and SVMs based on maximum output information</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2004-07-01</date><risdate>2004</risdate><volume>15</volume><issue>4</issue><spage>937</spage><epage>948</epage><pages>937-948</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>This paper presents feature selection algorithms for multilayer perceptrons (MLPs) and multiclass support vector machines (SVMs), using mutual information between class labels and classifier outputs, as an objective function. This objective function involves inexpensive computation of information measures only on discrete variables; provides immunity to prior class probabilities; and brackets the probability of error of the classifier. The maximum output information (MOI) algorithms employ this function for feature subset selection by greedy elimination and directed search. The output of the MOI algorithms is a feature subset of user-defined size and an associated trained classifier (MLP/SVM). These algorithms compare favorably with a number of other methods in terms of performance on various artificial and real-world data sets.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>15461085</pmid><doi>10.1109/TNN.2004.828772</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1045-9227
ispartof IEEE transaction on neural networks and learning systems, 2004-07, Vol.15 (4), p.937-948
issn 1045-9227
2162-237X
1941-0093
2162-2388
language eng
recordid cdi_crossref_primary_10_1109_TNN_2004_828772
source IEEE Xplore (Online service)
subjects Algorithms
Artificial Intelligence
Breast Neoplasms - classification
Breast Neoplasms - diagnosis
Classifiers
Cluster Analysis
Computer science
Computer Simulation
Computing Methodologies
Decision Support Techniques
Error analysis
Filters
Humans
Information Storage and Retrieval - methods
Information Theory
Likelihood Functions
Mathematical analysis
Mathematical models
Models, Statistical
Multilayer perceptrons
Mutual information
Neural networks
Neural Networks (Computer)
Partitioning algorithms
Pattern Recognition, Automated
Probability distribution
Probability Learning
Supervised learning
Support vector machine classification
Support vector machines
title Feature selection in MLPs and SVMs based on maximum output information
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20selection%20in%20MLPs%20and%20SVMs%20based%20on%20maximum%20output%20information&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Sindhwani,%20V.&rft.date=2004-07-01&rft.volume=15&rft.issue=4&rft.spage=937&rft.epage=948&rft.pages=937-948&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2004.828772&rft_dat=%3Cproquest_cross%3E66934223%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c510t-2b5fd9f51894dba85894047d35f9b064f8fc845182d0ac8321a6b8a046efffe13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=920883904&rft_id=info:pmid/15461085&rft_ieee_id=1310365&rfr_iscdi=true